Advertisement

European Journal of Pediatrics

, Volume 155, Supplement 1, pp S64–S68 | Cite as

Studies of multimodal evoked potentialsin treated phenylketonuria: the pattern of vulnerability

  • A. C. Ludolph
  • U. Vetter
  • K. Ullrich
Article

Abstract

We performed studies of multimodal evoked potentials and peripheral sensory and motor nerve conductions in 33 early and 6 late treated patients with phenylketonuria. The studies revealed the following picture:
  1. 1.

    In 27% of early treated patients latencies of visual evoked potentials were increased. The cause for these changes is unknown.

     
  2. 2.

    Nerve conduction studies showed the presence of a minor sensory neuropathy which in rare cases may also affect peripheral motor nerves. This neuropathy did not have features of a central-peripheral distal axonopathy which argues against a toxic/nutritional causation.

     
  3. 3.

    Deficits in the central sensory, motor, and auditory pathways were present, but rare in early treated patients.

     

If the results of electrophysiological studies reported by different groups are compared, the emerging picture is very similar and the majority of the — minor — differences is likely to be explained by technical aspects.

Key words

Hyperphenylaninaemia Phenylketonuria Evoked potentials Metabolic disorders Dopamine 

Abbreviations

PKU

phenylketonuria

VEP

visual evoked potential

References

  1. 1.
    Bick U, Fahrendorf G, Ludolph AC, Vassallo P, Weglage J, Ullrich K (1991) Disturbed myelination in patients with treated hyperphenylalaninemia: evaluation with magnetic resonance imaging. Eur J Pediatr 150:185–189PubMedCrossRefGoogle Scholar
  2. 2.
    Bick U, Ullrich K, Stöber U, Möller H, Schuierer G, Ludolph AC, Oberwittler C, Weglage J, Wendel U (1993) White matter abnormalities in patients with treated hyperphenylalanaemia: magnetic resonance relaxometry and proton spectroscopy findings. Eur J Pediatr 152:1012–1020PubMedCrossRefGoogle Scholar
  3. 3.
    Cardona F, Leuzzi V, Antonozzi I, Benedetti P, Loizzo A (1991) The development of auditory and visual evoked potentials in early treated Phenylketonurie children. Electroencephalogr Clin Neurophysiol 80:8–15PubMedCrossRefGoogle Scholar
  4. 4.
    Cleary MA, Walter JA, Wraith JE, Jenkins JPR, Alani SM, Tyler K, Whittle D (1994) Magnetic resonance imaging of the brain in phenylketonuria. Lancet 344:87–90PubMedCrossRefGoogle Scholar
  5. 5.
    Coskun T, Topcu M, Üstündag I, Özalp I, Renda Y, Ciger A, Nurlu G (1993) Neurophysiological studies of patients with classical phenylketonuria: evaluation of results of IQ scores, EEG and evoked potentials. Turk J Pediatr 35:1–10PubMedGoogle Scholar
  6. 6.
    Creel D, Buehler BA (1982) Pattern evoked potentials in phenylketonuria. Electroencephalogr Clin Neurophysiol 53:220–223PubMedCrossRefGoogle Scholar
  7. 7.
    Weglage J, Pietsch M, Fünders B, Koch HG, Ullrich K (1996) Deficits in selective and sustained attention processes in early treated children with phenylketonuria — result of impaired frontal lobe functions? Eur J Pediatr 155:200–204PubMedCrossRefGoogle Scholar
  8. 8.
    Giovannini M, Valsasina R, Villani R, Ducati A, Longhi R, Riva E, Landi A, Longhi R (1987) Pattern reversal visual evoked potentials in phenylketonuria. J Inherited Metab Dis 11:416–421CrossRefGoogle Scholar
  9. 9.
    Hanley WB, Feigenbaum AS, Clarke JTR, Schoonheyt WE, Austin VJ Vitamin B12 deficiency in adolescents and young adults with PKU. Eur J Pediatr (in press)Google Scholar
  10. 10.
    Korinthenberg R, Ullrich K, Füllenkemper F (1988) Evoked potentials and electroencephalography in adolescents with phenylketonuria. Neuropediatrics 19:175–178PubMedCrossRefGoogle Scholar
  11. 11.
    Landi A, Ducati A, Villani R, Longhi R, Riva E, Rodocanachi C, Giovannini M (1987) Pattern-reversal visual evoked potentials in Phenylketonurie children. Childs Nerv Syst 3:278–281PubMedCrossRefGoogle Scholar
  12. 12.
    Lou HC, Toft PB, Andresen J, Mikkelsen I, Olsen B, Güttier F, Wieslander S, Henriksen O (1992) An occipitotemporal syndrome in adolescents with optimally controlled hyperphenylalaninemia. J Inherited Metab Dis 15:687–695PubMedCrossRefGoogle Scholar
  13. 13.
    Ludolph AC, Ullrich K, Nedjat S, Masur H, Bick U (1992) Neurological outcome in 22 treated adolescents with hyperphenylalaninaemia. A clinical and electrophysiological study. Acta Neurol Scand 85:243–248PubMedCrossRefGoogle Scholar
  14. 14.
    Pietz J, Schmidt E, Matthis P, Kobialka B, Kutscha A, de Sonneville L (1993) EEGs in phenylketonuria. I: Follow up to adulthood; II: Short-term diet-related changes in EEGs and cognitive function. Dev Med Child Neurol 35:54–64PubMedCrossRefGoogle Scholar
  15. 15.
    Scriver CR, Kaufmann S, Woo SL (1989) The hyperphenylalaninemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. McGraw Hill, New York, pp 495–546Google Scholar
  16. 16.
    Spencer PS, Schaumburg HH (1976) Central and peripheral distal axonopathy — the pathology of dying-back polyneuropathies. In: Zimmermann HM (ed) Progress in Neuropathology, Vol. 3, Grune and Stratton, New York, pp 253–295Google Scholar
  17. 17.
    Thompson AJ, Smith I, Kendall BE, Youl BD, Brenton D (1991) Magnetic resonance imaging changes in early treated patients with phenylketonuria. Lancet 337:1224PubMedCrossRefGoogle Scholar
  18. 18.
    Villasana D, Butler IJ, Williams JC, Roongta S J (1990) Neurological deterioration in adult phenylketonuria. J Inherited Metab Dis 12:451–457CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. C. Ludolph
    • 1
  • U. Vetter
    • 2
  • K. Ullrich
    • 3
  1. 1.Department of NeurologyHumboldt UniversityBerlinGermany
  2. 2.Department of PaediatricsHumboldt UniversityBerlinGermany
  3. 3.Department of PaediatricsUniversity of MünsterMünsterGermany

Personalised recommendations