Knowledge and Information Systems

, Volume 3, Issue 3, pp 356–373 | Cite as

Discovering Text Databases with Neural Nets

  • Yong S. Choi


Since documents on the Web are naturally partitioned into many text databases, the efficient document retrieval process requires identifying the text databases that are most likely to provide relevant documents to the query and then searching for the identified text databases. In this paper, we propose a neural net based approach to such an efficient document retrieval. First, we present a neural net agent that learns about underlying text databases from the user's relevance feedback. For a given query, the neural net agent, which is sufficiently trained on the basis of the BPN learning mechanism, discovers the text databases associated with the relevant documents and retrieves those documents effectively. In order to scale our approach with the large number of text databases, we also propose the hierarchical organization of neural net agents which reduces the total training cost at the acceptable level. Finally, we evaluate the performance of our approach by comparing it to those of the conventional well-known approaches.

Keywords: Text database; Document retrieval; Neural net agent; Relevance feedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag London Limited 2001

Authors and Affiliations

  • Yong S. Choi
    • 1
  1. 1.Department of Computer Science Education, Hanyang University, Hangdang-dong, Seongdong-ku, Seoul 133-791, KoreaKR

Personalised recommendations