Skip to main content
Log in

Axisymmetric natural damped frequencies of a viscous liquid in a circular cylindrical Container — An alternative semi-analytical solution

Axialsymmetrische schwingungen einer viskosen Flüssigkeit im zylindrischen Tank. — Eine alternative semi-analytische Lösung

  • Originalarbeiten
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

For axisymmetric liquid motion (m=0) in a circular cylindrical Container nlled with an incompressible and viscous liquid the natural damped frequencies are determined. The analysis satisfies the side wall conditions exactly while only the normal Container bottom condition could be satisfied. This restricts the Solution results to liquid height flllings h/a to larger values (h/a>1). It was found that with increase of the liquid height ratio h/a the oscillation frequency and decay magnitude are both increasing.

Zusammenfassung

Es werden die axialsymmetrischen gedämpften Eigenfrequenzen einer viskosen Flüssigkeit im kreiszylindrischen Behälter bestimmt. Dabei werden die Zylinderwandbedingungen exakt erfüllt und für den Tankboden nur die Normalbedingung berücksichtigt. Da das Schwappen der Flüssigkeit im oberen Teil des Behälters stattfindet gilt die hier behandelte Lösung für größere Flüssigkeitshöhenverhältnisse h/a>1. Die numerischen Ergebnisse zeigen, daß mit wachsender Flüssigkeitshöhe die Schwappfrequenzen und die Abklingraten zunehmen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of container

g :

gravity constant (g*=ga 3/ν 2)

h :

liquid height

J m :

Bessel function of the first kind

p :

pressure

r, ϕ, z :

cylindricalpolar coordinates

\(s = \bar \sigma + i\bar \omega \) :

complex frequency (S=sa 2/ν)

t :

time

u, w :

radial and axial liquid velocity

α 2=ϱga 2/σ :

parameter (α 2=g*/σ *=Bo) Bond number

σ :

liquid surface tension (σ*=σa/(ϱν 2))

Λ n :

roots of Eq. (18) (Λ n =λ n a)

ϱ :

mass density

η :

dynamic viscosity

ν=η/ϱ :

kinematic viscosity

Ψ :

stream function

Σ:

free liquid surface displacement

τ rz :

shear stress

References

  1. Abramson HN (ed.) (1966) The dynamic behavior of Iiquids in moving Containers. NASA-SP-106

  2. Graham EW, Rodriguez AM (1952) The characteristics of fuel motion which affect airplane dynamics. J. Appl. Mech. 19, 381–388

    Google Scholar 

  3. Bauer HF, Villanueva J (1966) Theory of liquid sloshing in a rectangular Container with numerical examples for C-5A wing. Lockheed-Georgia Company Report no. ER-8390

  4. Bauer HF (1964) Treibstoffschwingungen in Raketenbehältern und ihr Einfluß auf die Gesamtstabilität, Teil I. ZFW 12, 85–101

    Google Scholar 

  5. Bauer HF (1963) Theory of liquid sloshing in compartmented cylindrical tanks due to bending excitation. AIAA Journal 1, 1590–1595

    Article  MATH  Google Scholar 

  6. Bauer HF (1963) Liquid sloshing in a cylindrical quartertank. AIAA Journal 1, 2601–2606

    Article  MATH  Google Scholar 

  7. Bauer HF (1966) Response of liquid in a rectangular Container. Journal of the Engineering Mechanics Division. Proceedings of the American Society of Civil Engineers 92, 1–23

    Google Scholar 

  8. Bauer HF (1981) Flüssigkeitsschwingungen mit freier Oberfläche in keilförmigen Behältern. Acta Mechanica 38, 31–34

    Article  MATH  MathSciNet  Google Scholar 

  9. Bauer HF (1982) Flüssigkeitsschwingungen in Kegelbehälterformen. Acta Mechanica 43, 185–200

    Article  MATH  Google Scholar 

  10. Bauer HF (1981) Freie Flüssigkeitsschwingungen in parabolischen Behälterformen. ZFW 5, 249–253

    Google Scholar 

  11. Bauer HF (1984) Forced liquid oscillations in paraboloid-containers. ZFW 8, 49–55

    Google Scholar 

  12. Bauer HF, Eidel W (1989) Liquid oscillations in a prolate spheroid. Ingenieur-Archiv 5, 371–381

    Article  Google Scholar 

  13. Budiansky B (1960) Sloshing of Iiquids in circular canals and spherical tanks. J. Aerospace Sei. 27, 161–173

    MathSciNet  Google Scholar 

  14. Chun WH (1964) Fuel sloshing in a spherical tank filled to an arbitrary depth. AIAA Journal 2, 1972–1979

    Article  Google Scholar 

  15. Chun WH (1960) Sloshing of Iiquids in cylindrical tanks of elliptical cross section. ARS-J. 30, 360–363

    Google Scholar 

  16. Rattayya J (1965) Sloshing of Iiquids in axisymmetric ellipsoidal tanks. AIAA-paper 65-114. AIAA-2, Aerospace Science Meeting. New York

  17. Levin E (1973) Oscillations of a fluid in a rectilinear conical Container. AIAA-J. 1, 1447

  18. Dokuchaev LV (1964) On the Solution of a boundary value problem on the sloshing of a liquid in conical cavities. PMM 28, 151–154

    Google Scholar 

  19. Lamb H (1945) Hydrodynamics, 6th edition, Dover Publ., New York

    Google Scholar 

  20. Bauer HF (1992) Liquid oscillations in a circular cylindrical Container with “sliding” contact line. Forsch. Ing. Wes. 58, 240–251

    Article  Google Scholar 

  21. Bauer HF, Eidel W (1997) Axisymmetric viscous liquid oscillations in a cylindrical Container. Forsch. Ing. Wes. 63, 189–201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, H.F., Eidel, W. Axisymmetric natural damped frequencies of a viscous liquid in a circular cylindrical Container — An alternative semi-analytical solution. Forsch Ing-Wes 65, 191–199 (1999). https://doi.org/10.1007/PL00010871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010871

Keywords

Navigation