Advertisement

Forschung im Ingenieurwesen

, Volume 65, Issue 2–3, pp 58–90 | Cite as

Einführung in moderne Galerkin-Randeiementmethoden mit einer Anwendung aus dem Maschinenbau

  • H. Andrä
Originalarbeiten
  • 105 Downloads

Zusammenfassung

Die Galerkin-Randelementmethode ist ein Näherungsverfahren für Integralgleichungen, stellt jedoch gegenüber klassischen Integralgleichungsverfahren ein universelles Werkzeug zur Lösung praktischer Ingenieurprobleme dar und kann sehr gut mit Finite-Element-Substrukturen gekoppelt werden. Die Randelementmethode, bei der als Hauptvorteil nur ein Oberflächennetz generiert werden muß, ist bei speziellen Anwendungen beispielsweise für Kerb- und Rißprobleme der FEM überlegen. Die einzelnen Schritte zur Lösung eines elliptischen Randwertproblems über ein System von Randintegralgleichungen wird am Beispiel des dreidimensionalen linearen Elastizitätsproblems erläutert. Zur mathematischen Untersuchung von elliptischen Differentialgleichungen und äquivalenten Integralgleichungen hat sich die Theorie der Sobolev-Räume als besonders geeignet herausgestellt. Grundbegriffe zu Sobolev-Räumen werden eingeführt, so daß der Leser nicht in Lehrbüchern nachschlagen muß. Die Überführung der elliptischen Randwertprobleme auf Systeme von stark singulären und hypersingulären Integralgleichungen wird mit dem Calderon-Projektor durchgeführt, zu dessen Definition Fun-damentallösungen verwendet werden. Die Diskretisierung des vorher abgeleiteten Systems von Randintegralgleichungen mit der Galerkin-Randelementmethode wird dargestellt. Schließlich wird die näherungsweise Lösung von nichtlinearen Problemen unter Verwendung der Galerkin-Randelementmethode am Beispiel einer elastopla-stischen Randwertaufgabe erläutert. Eine numerische Testrechnung für ein Festigkeitsproblem aus dem Maschinenbau wird kurz diskutiert.

Formelzeichen

Menge der natürlichen Zahlen

Menge der reellen Zahlen

+

Menge der nichtnegativen reellen Zahlen

Menge der komplexen Zahlen

Cl

Raum der l-mal stetig differenzierbaren, beschränkten Funktionen (Auch alle Ableitungen seien beschränkt.)

Cl

Raum der l-mal stetig differenzierbaren, beschränkten Funktionen, deren l-te Ableitung λ-hölderstetig ist.

D(Ω)=C0(Ω)

L. Schwartzsche Grundfunktionen: Menge aller fmiten, unendlich oft differenzierbaren Funktionen mit einem Träger in Ω (Ω offen)

D′(Ω)

Raum der L. Schwartzschen Distributionen

l(Ω)

l-mal stetig differenzierbare Funktionen auf ω

ℰ′(Ω)

Raum der stetigen linearen Funktionale auf (Ω)

Lp

Raum der lebesguemeßbaren Funktionen

Lploc

Menge der lokal (auf jedem Kompaktum) lebesguemeßbaren Funktionen

W2l

Sobolev-Slobodeckij-Raum

Hl

mit Fourier-Transformation definierter Sobolev-Raum(Hilbert-Raum)

DCm

Raum der Cauchy-Daten m-ter Ordnung

Nk,κ

Regularitätseigenschaft eines Gebietes

Ds

partielle Ableitungen im verallgemeinerten Sinne, wobei s=(s 1, s 2,..., s n) ein Multiindex ist

γ

Spuroperator; \(\gamma _0 \phi = \phi = \phi |_{\partial \Omega } ,\gamma _m \phi = \left( {\phi |_{\partial \Omega } ,\frac{{\partial \phi }}{{\partial n}}|_{\partial \Omega } ,...\frac{{\partial ^m \phi }}{{\partial n^m }}|_{\partial \Omega } } \right)\)

Z

Fortsetzungsoperator

Fourier-Transformation

L

Fréchet-Raum

δ

Laplace-Operator

δ*

Navier-Operator

δ0

Diracsche Deltadistribution

δij

Kronecker-Symbol

t=(t1, t2, t3)T

Randspannungsvektor

u=(u1, u2, u3)T

Verschiebungsvektor

εij

Verzerrungstensor

σij

Spannungstensor

εmnl

Levi-Civita-Tensor

\(\hat D = (D_{ijkl} )\)

Tensor 4. Stufe der Elastizitätskonstanten

λ, μ

Lamé-Konstanten

gij

Metriktensor im Riemann-Raum

J(.)

Jacobi-Determinante

x=(x1,x2,x3)T

Ortsvektor

n

äußerer Einheitsnormalenvektor

Ω

Gebiet

Ωc

Komplementärmenge zu Ω

Γ=∂Ω

Rand des Gebietes

K

Kompaktum (beschränkte und abgeschlossene Menge)

Kn

n-dimensionaler verallgemeinerter Einheitswürfel

M

Mannigfaltigkeit

U

Umgebung

Bɛ(x)

Kugel mit dem Mittelpunkt ξ ∈ ℝ3 und dem Radius ɛ

C1

Calderon-Projektor für das Innengebiet

h

Gitterparameter

H

Grobgitterparameter

I

Einheitsoperator

P

Differentialoperator des Randwertproblems

R1, R2

Matrizen von (tangentialen) Differentialoperatoren

S(x, y − x)

hypersinguläre Fundamentallösung

T(x, y − x)

singuläre Fundamentallösung

U(x, y − x)

schwach singuläre Fundamentallösung

D

hypersingulärer Integraloperator

K

singulärer Integraloperator

V

schwach singulärer Integraloperator

h

orthogonale Projektion auf V h

Sl

Oberflächenstück mit der Nummer l

Vl

Parametergebiet mit der Nummer l

\(\hat \pi \)

Referenzelement: \(\hat \pi = \left\{ {z \in \mathbb{R}^2 :0 < z_1 < 1,0 < z_2 < z_1 } \right\}\)

πih

geometrisches Randelement mit der Nummer i

ξ(i)

bijektive Abbildungsfunktion des Refe renzelements \(\hat \pi \) auf das Originalelement π i h

Nt(n), Nr(n)

Basisfunktionen bzgl. des Knotens n

Apq,ij

verallgemeinerte Elementsteifigkeitsmatrix

N1, N2

Formfunktionsmatrizen

Mij

Massematrix

Introduction to modern galerkin-type boundary element methods with an application from mechanical engineering

Abstract

The Galerkin-type boundary element method (BEM) is an discretization procedure for integral equations, represents itself however compared with classical integral equation methods as an universal tool for the solution of practical engineering problems and can be coupled very easily with finite element substructures. The BEM, whose main advantage lies in the fact that only a surface mesh must be generated, is superior to FEM in special applications, i.e. in elastostatics (notch problems) and fracture mechanics. In this paper the individual steps to solving an elliptical boundary value problem of 3-D linear elasticity theory by way of an equivalent system of boundary integral equations will be explained. For the mathematical investigation of elliptical differential equations and integral equations, the theory of Sobolev spaces has proved to be especially suitable. Basic terms to Sobolev spaces will be introduced so that the reader does not have to refer to textbooks for new terms. The transformation of elliptical boundary value problems to systems of singular and hypersingular integral equations will be explained with help of a Calderón projector, which is defined by using fundamental solutions. The discretization of the obtained integral equations with the Galerkin-type BEM will be presented. Finally the approximation of non-linear problems by using the Galerkin-type BEM will be shown. A numerical test for a strength problem will be discussed shortly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adams RA (1975) Sobolev Spaces. Academic Press, New YorkzbMATHGoogle Scholar
  2. 2.
    Arnold DN, Wendland WL (1983) On the asymptotic convergence of collocation methods. Math. Comp., 41:349–381zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Arnold DN, Wendland WL (1985) The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math., 47:317–341zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Banerjee PK, Butterfield R (1981) Boundary element methods in engineering science. McGraw Hill Book Company, LondonzbMATHGoogle Scholar
  5. 5.
    Banerjee PK, Cathie DN (1988) A direct formulation and numerical implementation of the boundary element method for two-dimensional problems in elastoplasticity. Int. J. Mech. Sci., 22:233–245CrossRefGoogle Scholar
  6. 6.
    Bauer W, Svobota M (1985) Industrial application of the three dimensional boundary element method (BEM) exemplified through the BE-Programmsystem DBETSY-3D. In Brebbia CA, Maier G (eds), Boundary Elements VII — Proceedings of the 7th Int. Conference, Italy, 1985, volume II, pages 14.3–14.20, Berlin, Springer-VerlagGoogle Scholar
  7. 7.
    Bausinger R, Kuhn G (1987) Die Boundary-Element-Methode, Theorie und industrielle Anwendung, volume 227 of Kontakt und Studium. Expert-Verlag, EsslingenGoogle Scholar
  8. 8.
    Berger H, Warnecke G, Wendland WL (1993) Analysis of a FEM/BEM coupling method for transonic flow computations. Preprint 93-9, Universität Stuttgart, Mathematisches Institut AGoogle Scholar
  9. 9.
    Berger HM (1955) A new approach to the analysis of large deflections of plates. J. Appl Mech., 32:465–472Google Scholar
  10. 10.
    Brandt A, Lubrecht A (1990) Multilevel matrix multiplication and fast solutions of integral equations. J. Comp. Physics, 90:248–270MathSciNetGoogle Scholar
  11. 11.
    Brebbia CA, Nowak AJ (1989) A new approach for transforming domain integrals to the boundary. In Numerical Methods in Engineering, volume 1, Berlin, Springer-VerlagGoogle Scholar
  12. 12.
    Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques — theory and applications in engineering. Springer-Verlag, Berlin, New YorkzbMATHGoogle Scholar
  13. 13.
    Brebbia CA, Wendland WL, Kuhn G, editors (1987). Boundary Elements IX — Proceedings of th 9th Int. Conference, Stuttgart, volume 1–3, Berlin, Springer-VerlagGoogle Scholar
  14. 14.
    Calderón AP, Zygmund A (1952) On the existence of certain singular integrals. Acta Math., 88:85–134zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chang CS, Chang Y (1995) Green’s function for elastic medium with general anisotropy. ASME J. Appl. Mech., 62:573–578zbMATHCrossRefGoogle Scholar
  16. 16.
    Costabel M (1987) Symmetric methods for the coupling of finite elements and boundary elements. In: Brebbia CA, Wendland WL, Kuhn G (eds), Boundary Elements IX, pages 411–420, Berlin, Springer-VerlagGoogle Scholar
  17. 17.
    Costabel M (1988) Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal., 19(3):613–626zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Costabel M, Ervin VJ, Stephan EP (1988) Experimental convergence rates for various couplings of boundary and finite elements. Preprint 1193, TH Darmstadt, Fachbereich MathematikGoogle Scholar
  19. 19.
    Costabel M, Stephan EP (1985) Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. In: Fiszdon W, Wilmański K (eds), Mathematical Models and Methods in Mechanics, volume 15 of Banach Center Publications, pages 175–251. PWN — Polish Scientific Publishers, WarsawGoogle Scholar
  20. 20.
    Costabel M, Stephan EP (1987) An improved boundary element Galerkin method for three-dimensional crack problems. Integral Equations Oper. Theory, 10:467–504zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Costabel M, Stephan EP (1988) Coupling of finite element and boundary element methods for an elasto-plastic interface problem. Preprint, Georgia Institute of TechnologyGoogle Scholar
  22. 22.
    Costabel M, Stephan EP (1988) Duality estimates for the numerical solution of integral equations. Numer. Math., 54:339–353zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Costabel M, Wendland WL (1986) Strong ellipticity of boundary integral operators. J. Reine Angew. Math., 372:34–63zbMATHMathSciNetGoogle Scholar
  24. 24.
    Cruse TA (1969) Numerical solutions in three dimensional elastostatics. Int. J. Solids Structures, 5:1259–1274zbMATHCrossRefGoogle Scholar
  25. 25.
    Dahmen W, Prössdorf S, Schneider R (1993) Wavelet approximation methods for pseudodifferential equations. Adv. in Comput. Math., 1:259–335zbMATHCrossRefGoogle Scholar
  26. 26.
    Dallner R (1993) Behandlung inelastischer 3D-Probleme mittels Randelementmethode. Number 126 in VDI Fortschrittsberichte Reihe 18: Mechanik/Bruchmechanik. VDI-Verlag, DüsseldorfGoogle Scholar
  27. 27.
    Dallner R, Kuhn G (1993) Efficient evaluation of volume integrals in the boundary element method. Comp. Meth. Appl. Mech. Engng., 109:95–109zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Dieudonné J (1978) Eléments d’Analys, Vol VIII. Gauthier-DjaouaGoogle Scholar
  29. 29.
    Doblare M (1987) Computational aspects of the boundary element method. In: Brebbia CA (eds), Topics in Boundary Element Research, volume 3, Berlin, Springer-VerlagGoogle Scholar
  30. 30.
    Douglis A, Nirenberg L (1955) Interior estimates for elliptic systems of partial differential equations. Commun. Pure Appl. Math., 8:503–538zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Fichera G (1965) Linear elliptic differential systems and eigenvalue problems, volume 8 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  32. 32.
    Förster A, Kuhn G (1994) A field boundary element formulation for material nonlinear problems at finite strains. Int. J. Solids Structures, 31:1777–1792zbMATHCrossRefGoogle Scholar
  33. 33.
    Gatica GN, Hsiao GC (1989) The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem. Zeitschrift für Analysis und ihre Anwendung, 28:377–387MathSciNetGoogle Scholar
  34. 34.
    Gatica GN, Hsiao GC (1995) Boundary-field equation methods for a class of nonlinear problems, volume 331 of Pitman Research Notes in Mathematics Series. Longman House, HarlowGoogle Scholar
  35. 35.
    Gipson GS (1987) Boundary element fundamentals — Basic concepts and recent developments in the Poisson Equation. Computational Mechanics Publication, SouthamptonzbMATHGoogle Scholar
  36. 36.
    Grannell JJ (1987) On simplified hybrid methods for coupling of finite elements and boundary elements. In: Brebbia CA, Wendland WL, Kuhn G (eds), Boundary Elements IX, volume 1, pages 447–460, Berlin, SpringerGoogle Scholar
  37. 37.
    Grisvard P (1985) Boundary value problems in non-smooth domains. Pitman, LondonGoogle Scholar
  38. 38.
    Gründemann H (1991) Randelementmethode in der Festkörpermechanik. Fachbuchverlag, LeipzigzbMATHGoogle Scholar
  39. 39.
    Hackbusch W (1986) Theorie und Numerik elliptischer Differentialgleichungen. Teubner, StuttgartzbMATHGoogle Scholar
  40. 40.
    Hackbusch W (1989) Integralgleichungen: Theorie und Numerik. B. G. Teubner, StuttgartzbMATHGoogle Scholar
  41. 41.
    Halphen B, Nguyen QS (1975) Sur les matéraux standard génerallisés. J. de Mécanique, 14:39–63zbMATHGoogle Scholar
  42. 42.
    Hartmann F (1987) Methode der Randelemente. Boundary Elements in der Mechanik auf dem PC. Springer, BerlinzbMATHGoogle Scholar
  43. 43.
    Hildenbrand JO (1994) Hypersinguläre Integralgleichungen in der Randelementmethode — Berechnung der Integrale und Anwendung bei linearelastischen Aufgaben. Number 143 in VDI Reihe 18. VDI-Verlag GmbH, Düsseldorf, Dissertation (PhD Thesis)Google Scholar
  44. 44.
    Holzer SM (1992) Das symmetrische Randelementverfahren: Numerische Realisierung und Kopplung mit der Finite-Element-Methode zur elastoplastischen Strukturanalyse. Berichte aus dem Konstruktiven Ingenieurbau, Technische Universität MünchenGoogle Scholar
  45. 45.
    Hörmander L (1966) Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math., 83:129–209MathSciNetCrossRefGoogle Scholar
  46. 46.
    Hörmander L (1983) The analysis of linear partial differential operators, volume I. Springer, Berlin, Heidelberg, New York, TokyoGoogle Scholar
  47. 47.
    Hsiao GC, MacCamy RC (1973) Solution of boundary value problems by integral equations of the first kind. SIAM Review, 15 (4):687–705zbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Hsiao GC (1988) The coupling of BEM and FEM — a brief review. In: Brebbia CA, et al. (eds), Boundary Elements X, volume I, pages 431–445, SpringerGoogle Scholar
  49. 49.
    Hsiao GC (1990) The coupling of boundary element and finite element methods. Z. angewandte Math. Mech. (ZAMM), 70:493–503zbMATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Hsiao GC, Schnack E, Wendland WL (1995) A hybrid coupled finite-boundary element method. Preprint 99-11, Universität Stuttgart, Mathematisches Institut AGoogle Scholar
  51. 51.
    Hsiao GC, Wendland WL (1977) A finite element method for some integral equations of the first kind. J. Math. Anal. Appl., 58:449–481zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Hsiao GC, Wendland WL (1991) Domain decomposition in boundary element methods. In: Glowinski R, et al. (eds), Fourth Int. Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 41–49, Philadelphia, SIAM Publ.Google Scholar
  53. 53.
    Huber O (1994) Behandlung elastoplastischer 3D-Rißprobleme mittels der Randelementmethode. Number 153 in VDI Fortschrittberichte Reihe 18: Mechanik/Bruchmechanik. VDI-Verlag, DüsseldorfGoogle Scholar
  54. 54.
    John F (1955) Plane waves and spherical means applied to partial differential equations. Number 2 in Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers, New YorkGoogle Scholar
  55. 55.
    Johnson J, Nedelec JC (1980) On the coupling of boundary integral and finite element methods. Math. Comp., 35:1063–1079zbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Khoromskij BN, Mazurkevich GE, Zhidkov EP (1990) Domain decomposition method for magnetostatics nonlinear problems in combined formulation. Sov. J. Numer. Anal. Math. Modelling, 5(2):111–136zbMATHCrossRefGoogle Scholar
  57. 57.
    Kohn JJ, Nirenberg L (1965) An algebra of pseudodifferential operators. Comm. Pure Appl. Math., 18:269–305zbMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Kröner E (1953) Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen. Zeitschrift für Physik, 136:402–410zbMATHCrossRefGoogle Scholar
  59. 59.
    Kuhn G, Huber O (1993) Behandlung elastoplastischer Kerb- und Rißprobleme mittels Randelementmethode. 2. Zwischenbericht zum DFG-Projekt: Ku 360/8, Lehrstuhl für Technische Mechanik, ErlangenGoogle Scholar
  60. 60.
    Kuhn G, Möhrmann W (1983) Boundary element method in elastostatics: Theory and applications. Appl. Math. Modelling, 7:97–105zbMATHCrossRefGoogle Scholar
  61. 61.
    Kupradze VD (1963) Metody potenciala v teorii uprogosti. Fismatgis, MoskauGoogle Scholar
  62. 62.
    Kupradze VD, Gegelia TG, Basheleishvili MO, Burchuladze TV (1979) Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Publ. Comp., Amsterdam, New York, OxfordzbMATHGoogle Scholar
  63. 63.
    Lachat JC, Watson JO (1976) Effective numerical treatment of boundary integral equations: A formulation for three-dimensional elastostatics. Int. J. Numer. Meth. Eng., 10:991–1005zbMATHCrossRefGoogle Scholar
  64. 64.
    Lage C (1995) A parallel implementation of 3-D BEM with focus on panel clustering. PhD thesis, Inst. F. Prakt. Math., Universität Kiel (in German)Google Scholar
  65. 65.
    Lamp U, Schleicher T, Stephan E, Wendland WL (1984) Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem. Computing, 33:269–296zbMATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Langer U (1994) Parallel iterative solution of symmetric coupled FE/BE-equations via domain decomposition. Contemp. Math., 157(217):335–344Google Scholar
  67. 67.
    Lemaitre J, Chaboche JL (1985) Mécanique des Matériaux solides. Dunod, ParisGoogle Scholar
  68. 68.
    Love AEH (1944) A treatise on the mathematical theory of elasticity. DoverGoogle Scholar
  69. 69.
    Maier G, Novati G, Perego U (1988) Plastic analysis by boundary elements. In: Wendland WL, Stein E (eds), Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, pages 213–272, Wien, New York, SpringerGoogle Scholar
  70. 70.
    Maier G, Polizzotto C (1987) A Galerkin approach to boundary element elastoplastic analysis. Comp. Methods Appl. Mech. Eng., 60:175–194zbMATHCrossRefGoogle Scholar
  71. 71.
    Meyer A, Rjasanow S (1990) An effective direct solution method for certain boundary element equations in 3d. Math. Meth. Appl. Sci., 13:43–53zbMATHMathSciNetCrossRefGoogle Scholar
  72. 72.
    Michlin SG (1962) Mnogomernye singularnye integraly i integralnye uravnenij. Fismatgis, MoskauGoogle Scholar
  73. 73.
    Mikhlin SG, Morozov NF, Paukshto MV (1995) The integral equations of the theory of elasticity, volume 135 of Teubner-Texte zur Mathematik. Teubner, Stuttgart, LeipzigGoogle Scholar
  74. 74.
    Mikhlin SG, Prössdorf S (1986) Singular integral operators. Springer, BerlinGoogle Scholar
  75. 75.
    Miranda C (1970) Partial differential equations of elliptic type, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Verlag, BerlinGoogle Scholar
  76. 76.
    Möhrmann W, Bauer W (1987) DBETSY — industrial application of the BEM. In: Kuhn G, Brebbia CA, Wendland WL (eds), Boundary Elements IX — Proceedings of the 9th Int. Conference, Stuttgart, volume I, pages 593–607, Berlin, SpringerGoogle Scholar
  77. 77.
    Möhrmann W, Sahm M (1986) DBETSY-3D, Benutzerhandbuch. Technical report, Daimler-Benz AG, StuttgartGoogle Scholar
  78. 78.
    Mura T (1982) Micromechanics of defects in solids. Nijhoff Publ., Hague, Boston, LondonGoogle Scholar
  79. 79.
    Mußchelischwili NI (1971) Einige Grundaufgaben zur mathematischen Elastizitätstheorie. Fachbuchverlag, LeipzigGoogle Scholar
  80. 80.
    Nardini D, Brebbia CA (1982) A new approach to free vibration analysis using boundary elements. In Boundary Element Methods in Engineering, Berlin, New York, SpringerGoogle Scholar
  81. 81.
    Nedelec J-C, Planchard J (1973) Une méthode variationelle de éléments finis pour la resolution numérique d’un problème extérieur dans R3. RAIRO Anal. Numer., 7:105–129MathSciNetGoogle Scholar
  82. 82.
    Neumann C (1877) Untersuchungen über das logarithmische und Newtonsche Potential. Teubner-Verlag, LeipzigGoogle Scholar
  83. 83.
    Neureiter W (1982) Boundary-Element-Programmrealisierung zur Lösung von zwei- und dreidimensionalen thermoelastischen Problemen mit Volumenkräften. Diss., TU MünchenGoogle Scholar
  84. 84.
    Nečas J (1967) Les méthodes directes en théorie des équations elliptiques. Masson, ParisGoogle Scholar
  85. 85.
    Nowak AJ (1989) The multiple reciprocity method of solving transient heat conduction problems. In Boundary Elements XI, volume 2, Berlin, SpringerGoogle Scholar
  86. 86.
    Nowak AJ, Brebbia CA (1989) The multiple reciprocity method: A new approach for transforming BEM domain integrals to the boundary. Engng. Analysis, 6:164–167Google Scholar
  87. 87.
    Ortner N (1980) Regularisierte Faltung von Distributionen. Teil 1 und 2. ZAMP, 31:133–173zbMATHMathSciNetGoogle Scholar
  88. 88.
    Ortner N (1987) Methods of construction of fundamental solutions of decomposable linear differential operators. In: Brebbia A, et al (eds), Boundary Elements IX, Proc. of the 9th BEM-Conference, volume 1, pages 79–97, Berlin, SpringerGoogle Scholar
  89. 89.
    Ortner N (1988) Die Fundamentallösung des Timoshenko- und des Boussinesq-operators. ZAMM, 68:547–553MathSciNetCrossRefGoogle Scholar
  90. 90.
    Ortner N, Cheung A H-D, Antes H (1994) Fundamental solutions of products of Helmholtz and polyharmonic operators. Engng. Anal with Boundary Elements, 14:187–191CrossRefGoogle Scholar
  91. 91.
    Ortner N, Wagner P (1990) Some new fundamental solutions. J. Math. Meth. Appl. Sci., 12:439–461zbMATHMathSciNetCrossRefGoogle Scholar
  92. 92.
    Ortner N, Wagner P (1992) On the fundamental solution of operator of dynamic linear thermoelasticity. J. Math. Meth. Appl. Sci., pages 524–550Google Scholar
  93. 93.
    Ortner N, Wagner P (1993) Fundamental solutions of hyperbolic differential operators and the Poisson summation formulae. Integral transforms and special functions, 1:183–196zbMATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    Ortner N, Wagner P (1997) A survey on explicit representation formulae for fundamental solutions of linear partial differential operators. Acta Applic. Math. 47:101–124zbMATHMathSciNetCrossRefGoogle Scholar
  95. 95.
    Owen DRJ, Hinton E (1975) Finite elements in plasticity — Theory and Applications. Pineridge Press, Swansea, UKGoogle Scholar
  96. 96.
    Partridge PW, Brebbia CA, Wrobel LC (1992) The dual reciprocity boundary element method. Elsevier Applied Science, London, New YorkzbMATHGoogle Scholar
  97. 97.
    Polizzotto C (1987) A symmetric definite BEM formulation for the elastoplastic rate problem. In: Brebbia CA, Wendland WL, Kuhn G (eds), Boundary Elements IX, volume 2, pages 315–334, Berlin, Springer-VerlagGoogle Scholar
  98. 98.
    Polizzotto C (1988) A consistent formulation of the BEM within elastoplasticity. In: Cruse TA (eds), Advanced Boundary Element Methods, pages 315–324. Springer, Berlin, HeidelbergGoogle Scholar
  99. 99.
    Polizzotto C (1988) An energy approach to the boundary element method. Part I: Elastic solids. Comp. Methods Appl. Mech. Eng., 69:167–184zbMATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    Polizzotto C (1988) A energy approach to the boundary element method. Part II: Elastic-plastic solids. Comput. Meths. Appl. Mech. Engng., 69:263–276zbMATHMathSciNetCrossRefGoogle Scholar
  101. 101.
    Polizzotto C, Panzeca T, Zito M (1992) A consistent boundary/interior element method for evolutive elastic plastic structural analysis. In: Kane JH, et al. (eds), Advances in Boundary Element Techniques. SpringerGoogle Scholar
  102. 102.
    Polizzotto C, Zito M (1994) Variational formulations for coupled BE/FE methods in elastostatics. Z. angewandte Math, Mech. (ZAMM), 74:533–543zbMATHMathSciNetCrossRefGoogle Scholar
  103. 103.
    Pomp A (1996) Eine Rand-Gebiets-Integralmethode zur numerischen Lösung der Schalengleichungen eines elliptischen Differentialgleichungssystems mit variablen Koeffizienten. Habilitationsschrift, Math. Institut A, Universität Stuttgart, Pfaffenwaldring 57, D-70550 StuttgartGoogle Scholar
  104. 104.
    Prössdorf S, Schmidt G (1981) A finite element collocation method for singular integral equations. Math. Nachr., 100:33–66zbMATHMathSciNetCrossRefGoogle Scholar
  105. 105.
    Prössdorf S, Silbermann B (1977) Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen. Teubner, LeipzigzbMATHGoogle Scholar
  106. 106.
    Prössdorf S, Silbermann B (1991) Numerical analysis for integral and related operator equations. Akademie Verlag, BerlinGoogle Scholar
  107. 107.
    Rieder G (1968) Mechanische Deutung und Klassifizierung einiger Integralverfahren der ebenen Elastizitätstheorie. Bull. Acad. Pol. Sci., Sci. Technol., 16:101–114Google Scholar
  108. 108.
    Rieder G (1972) über Eingrenzungsverfahren und Integralgleichungsmethoden für elastische Scheiben, Platten und verwandte Probleme. Wiss. Zeitschrift der Hochschule für Architektur und Bauwesen Weimar, 19:217–222Google Scholar
  109. 109.
    Rizzo FJ (1967) An integral equation approach to boundary value problems of classical elastostatics. Quart. Appl. Math., 25:83–95zbMATHGoogle Scholar
  110. 110.
    Rokhlin V (1985) Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60:187–207zbMATHMathSciNetCrossRefGoogle Scholar
  111. 111.
    Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869zbMATHMathSciNetCrossRefGoogle Scholar
  112. 112.
    Saranen J (1988) The convergence of even degree spline collocation solution for potential problems in the plane. Numer. Math., 53:499–512zbMATHMathSciNetCrossRefGoogle Scholar
  113. 113.
    Saranen J, Wendland WL (1985) On the asymptotic convergence of collocation methods with spline functions of even degree. Math. Comp., 45(171):91–108zbMATHMathSciNetCrossRefGoogle Scholar
  114. 114.
    Sauter SA (1992) Über die effiziente Verwendung von Galerkinverfahren zur Lösung Fredholmscher Integralglei-chungen. Dissertation, Universität zu KielGoogle Scholar
  115. 115.
    Schatz A, Thomée V, Wendland WL (1990) Mathematical theory of finite and boundary element methods. Birkhäuser, BaselzbMATHGoogle Scholar
  116. 116.
    Schnack E (1984) Stress analysis with a combination of HSM and BEM. In: Whiteman JR (eds), Proc. MAFELAP 1984 Conf. on “The mathematics of Finite Elements and Applications”, pages 273–281, Uxbridge, Academic PressGoogle Scholar
  117. 117.
    Schnack E (1987) A hybrid BEM-model. Int. J. Num. Meth. Engng., 24(5):1015–1025zbMATHCrossRefGoogle Scholar
  118. 118.
    Schnack E (1990) Macro-elements for 2d- and 3d-elasticity with BEM. In: Tanaka M, Brebbia CA, Honma T (eds), Boundary Elements XII, volume I of Computational Mechanics Publications, pages 21–31, Berlin, SpringerGoogle Scholar
  119. 119.
    Schnack E, Becker I, Karaosmanoglu N (1990) Three-dimensional coupling of FEM and BEM in elasticity. In: Mang H, Kuhn G (eds), Discretization Methods in Structural Mechanics, pages 415–425, Berlin, Heidelberg, SpringerGoogle Scholar
  120. 120.
    Schnack E, Carmine R, Karaosmanoglu N (1988) Mixed non-conforming technique for coupling FEM and BEM. In: Atluri SN, Yagawa G (eds), Computational Mechanics ’88, volume 1, pages 5.iii.l-5.iii.4, Berlin, SpringerGoogle Scholar
  121. 121.
    Schnack E, Türke K (1993) Macroelements constructed with a nonconforming coupling technique of BEM and FEM. In: Casteleiro M, Navarrina F (eds), Proc. 2nd Conf. Num. Meth. Engng., La Coruna, Spain, 1993. In: Métodes Numéricos en Ingenieria, SpainGoogle Scholar
  122. 122.
    Schneider S, Bausinger R, Seeger G (1987) Industrial application of the boundary element system BETSY. In: Kuhn G, Brebbia CA, Wendland WL (eds), Boundary Elements IX — Proceedings of the 9th Int. Conference, Stuttgart, 1987, volume I, pages 535–548, Berlin, SpringerGoogle Scholar
  123. 123.
    Schwab C, Wendland WL (1992) Kernel properties and representation of boundary integral operators. Math. Nachr., 156:187–218zbMATHMathSciNetCrossRefGoogle Scholar
  124. 124.
    Schwab C, Wendland WL (1992) On numerical cubatures of singular surface integrals in boundary element methods. Num. Math., 62:343–369zbMATHMathSciNetCrossRefGoogle Scholar
  125. 125.
    Sirtori S (1979) General stress analysis method by means of integral equations and boundary elements. Meccanica, 14:210–218zbMATHCrossRefGoogle Scholar
  126. 126.
    Sloan I (1992) Error analysis of boundary integral methods. Acta Numerica, 1:287–339MathSciNetCrossRefGoogle Scholar
  127. 127.
    Sobolev SL (1964) Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathematischen Physik. Akademie Verlag, BerlinGoogle Scholar
  128. 128.
    Steinbach O, Wendland WL (1995) Efficient preconditioners for boundary element methods and their use in domain decomposition methods. Bericht DFG-Schwerpunkt „Randelementmethoden“ 95-19, Mathematisches Inst. A, Universität StuttgartGoogle Scholar
  129. 129.
    Stephan E, Wendland WL (1976) Remarks to Galerkin and least squares methods with finite elements for general elliptic problems. Manuscripta Geodaetica, 1:93–123zbMATHGoogle Scholar
  130. 130.
    Stephan E, Wendland WL (1985) An augmented Galerkin procedure for the boundary integral method applied to mixed boundary value problems. Appl. Numer. Math., 1:121–143zbMATHMathSciNetCrossRefGoogle Scholar
  131. 131.
    Stephan EP (1987) Boundary integral equations for mixed boundary value problems in R3. Math. Nachr., 134:21–53zbMATHMathSciNetCrossRefGoogle Scholar
  132. 132.
    Tanaka M, Tanaka K (1981) On new boundary element solution scheme for elastoplasticity. Ing. Arch., 50:289–295zbMATHCrossRefGoogle Scholar
  133. 133.
    Telles JCF (1983) The Boundary Element Method applied to inelastic problems, volume 1 of Lecture Notes in Engineering. Springer, BerlinGoogle Scholar
  134. 134.
    Triebel H (1978) Interpolation theory, function spaces, differential operators. North-Holland, AmsterdamGoogle Scholar
  135. 135.
    Türke K (1995) Eine Zweigitter-Methode zur Kopplung von FEM und BEM. PhD thesis, Fakultät für Maschinenbau, Universität KarlsruheGoogle Scholar
  136. 136.
    Vainikko G (1973) On the question of convergence of the Galerkin method. Tartu Ruekl. Uel. Toimetised, 177:148–152MathSciNetGoogle Scholar
  137. 137.
    Petersdorff T von (1989) Randwertprobleme der Elastizitätstheorie für Polyeder — Singularitäten und Approximation mit Randelementen. PhD thesis, Fachbereich Mathematik der TH DarmstadtGoogle Scholar
  138. 138.
    Petersdorff T von, Stephan EP (1990) Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes. Math. Meth. Appl. Sci., 12:229–249zbMATHCrossRefGoogle Scholar
  139. 139.
    Wendland W (1965) Lösung der ersten und zweiten Randwertaufgaben des Innen- und Außengebietes für die Potentialgleichung im R3 durch Randbelegungen. Dissertation TU Berlin D 83, Technische Universität BerlinGoogle Scholar
  140. 140.
    Wendland W (1968) Die Behandlung von Randwertaufgaben im R3, mit Hilfe von Einfach- und Doppelschichtpotentialen. Num. Math., 11:380–404zbMATHMathSciNetCrossRefGoogle Scholar
  141. 141.
    Wendland WL (1981) Asymptotic convergence of BEM/IEM for mixed boundary value problems. Preprint 611, TH DarmstadtGoogle Scholar
  142. 142.
    Wendland WL (1985) On some mathematical aspects of boundary element methods for elliptic problems. In: The Mathematics of Finite Elements and Applications V, pages 193–227. Academic Press, LondonGoogle Scholar
  143. 143.
    Wendland WL (1987) Strongly elliptic boundary integral equations In: Powell M, Iserles A (eds), The State of the Art in Numerical Analysis. Oxford University Press, OxfordGoogle Scholar
  144. 144.
    Wendland WL (1988) On asymptotic error estimates for combined BEM and FEM. In: Stein E, Wendland WL (eds), Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, number 301 in CISM, pages 273–333. Springer-Verlag, Wien, New YorkGoogle Scholar
  145. 145.
    Wendland WL (1990) On the coupling of finite elements and boundary elements. In: Kuhn G, Mang H (eds), Discretization methods in structural mechanics, pages 405–414, Berlin, IUTAM/IACM, SpringerGoogle Scholar
  146. 146.
    Wendland WL (Ed.) (1997) Boundary element topics, Springer, BerlinzbMATHGoogle Scholar
  147. 147.
    Westphal T, Jr. Pereira JT, de Barcellos CS (1996) On general fundamental solutions of some linear elliptic differential operators. Eng. Anal, with Bound. Elements 17:279–286CrossRefGoogle Scholar
  148. 148.
    Wilson RB, Cruse TA (1978) Efficient implementation of anisotropic three dimensional boundary-integral-equation stress analysis. Int. J. Num. Meth. Engng., 12:1383–1397zbMATHMathSciNetCrossRefGoogle Scholar
  149. 149.
    Wloka J (1982) Partielle Differentialgleichungen (Partial differential equations). B. G. Teubner, StuttgartGoogle Scholar
  150. 150.
    Zienkiewicz OC (1977) The Finite Element Method. McGraw-HillGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • H. Andrä
    • 1
  1. 1.Institut für Technische MechanikUniversität KarlsruheKarlsruheGermany

Personalised recommendations