Skip to main content
Log in

Einführung in moderne Galerkin-Randeiementmethoden mit einer Anwendung aus dem Maschinenbau

Introduction to modern galerkin-type boundary element methods with an application from mechanical engineering

  • Originalarbeiten
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Zusammenfassung

Die Galerkin-Randelementmethode ist ein Näherungsverfahren für Integralgleichungen, stellt jedoch gegenüber klassischen Integralgleichungsverfahren ein universelles Werkzeug zur Lösung praktischer Ingenieurprobleme dar und kann sehr gut mit Finite-Element-Substrukturen gekoppelt werden. Die Randelementmethode, bei der als Hauptvorteil nur ein Oberflächennetz generiert werden muß, ist bei speziellen Anwendungen beispielsweise für Kerb- und Rißprobleme der FEM überlegen. Die einzelnen Schritte zur Lösung eines elliptischen Randwertproblems über ein System von Randintegralgleichungen wird am Beispiel des dreidimensionalen linearen Elastizitätsproblems erläutert. Zur mathematischen Untersuchung von elliptischen Differentialgleichungen und äquivalenten Integralgleichungen hat sich die Theorie der Sobolev-Räume als besonders geeignet herausgestellt. Grundbegriffe zu Sobolev-Räumen werden eingeführt, so daß der Leser nicht in Lehrbüchern nachschlagen muß. Die Überführung der elliptischen Randwertprobleme auf Systeme von stark singulären und hypersingulären Integralgleichungen wird mit dem Calderon-Projektor durchgeführt, zu dessen Definition Fun-damentallösungen verwendet werden. Die Diskretisierung des vorher abgeleiteten Systems von Randintegralgleichungen mit der Galerkin-Randelementmethode wird dargestellt. Schließlich wird die näherungsweise Lösung von nichtlinearen Problemen unter Verwendung der Galerkin-Randelementmethode am Beispiel einer elastopla-stischen Randwertaufgabe erläutert. Eine numerische Testrechnung für ein Festigkeitsproblem aus dem Maschinenbau wird kurz diskutiert.

Abstract

The Galerkin-type boundary element method (BEM) is an discretization procedure for integral equations, represents itself however compared with classical integral equation methods as an universal tool for the solution of practical engineering problems and can be coupled very easily with finite element substructures. The BEM, whose main advantage lies in the fact that only a surface mesh must be generated, is superior to FEM in special applications, i.e. in elastostatics (notch problems) and fracture mechanics. In this paper the individual steps to solving an elliptical boundary value problem of 3-D linear elasticity theory by way of an equivalent system of boundary integral equations will be explained. For the mathematical investigation of elliptical differential equations and integral equations, the theory of Sobolev spaces has proved to be especially suitable. Basic terms to Sobolev spaces will be introduced so that the reader does not have to refer to textbooks for new terms. The transformation of elliptical boundary value problems to systems of singular and hypersingular integral equations will be explained with help of a Calderón projector, which is defined by using fundamental solutions. The discretization of the obtained integral equations with the Galerkin-type BEM will be presented. Finally the approximation of non-linear problems by using the Galerkin-type BEM will be shown. A numerical test for a strength problem will be discussed shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ℕ:

Menge der natürlichen Zahlen

ℝ:

Menge der reellen Zahlen

+ :

Menge der nichtnegativen reellen Zahlen

ℂ:

Menge der komplexen Zahlen

C l :

Raum der l-mal stetig differenzierbaren, beschränkten Funktionen (Auch alle Ableitungen seien beschränkt.)

C l :

Raum der l-mal stetig differenzierbaren, beschränkten Funktionen, deren l-te Ableitung λ-hölderstetig ist.

D(Ω)=C 0 (Ω):

L. Schwartzsche Grundfunktionen: Menge aller fmiten, unendlich oft differenzierbaren Funktionen mit einem Träger in Ω (Ω offen)

D′(Ω):

Raum der L. Schwartzschen Distributionen

l(Ω):

l-mal stetig differenzierbare Funktionen auf ω

ℰ′(Ω):

Raum der stetigen linearen Funktionale auf (Ω)

L p :

Raum der lebesguemeßbaren Funktionen

L loc p :

Menge der lokal (auf jedem Kompaktum) lebesguemeßbaren Funktionen

W l2 :

Sobolev-Slobodeckij-Raum

H l :

mit Fourier-Transformation definierter Sobolev-Raum(Hilbert-Raum)

DC m :

Raum der Cauchy-Daten m-ter Ordnung

N k,κ :

Regularitätseigenschaft eines Gebietes

D s :

partielle Ableitungen im verallgemeinerten Sinne, wobei s=(s 1, s 2,..., s n) ein Multiindex ist

γ:

Spuroperator; \(\gamma _0 \phi = \phi = \phi |_{\partial \Omega } ,\gamma _m \phi = \left( {\phi |_{\partial \Omega } ,\frac{{\partial \phi }}{{\partial n}}|_{\partial \Omega } ,...\frac{{\partial ^m \phi }}{{\partial n^m }}|_{\partial \Omega } } \right)\)

Z:

Fortsetzungsoperator

:

Fourier-Transformation

L :

Fréchet-Raum

δ:

Laplace-Operator

δ*:

Navier-Operator

δ 0 :

Diracsche Deltadistribution

δ ij :

Kronecker-Symbol

t=(t 1, t 2, t 3)T :

Randspannungsvektor

u=(u 1, u 2, u 3)T :

Verschiebungsvektor

ε ij :

Verzerrungstensor

σ ij :

Spannungstensor

ε mnl :

Levi-Civita-Tensor

\(\hat D = (D_{ijkl} )\) :

Tensor 4. Stufe der Elastizitätskonstanten

λ, μ :

Lamé-Konstanten

g ij :

Metriktensor im Riemann-Raum

J(.):

Jacobi-Determinante

x=(x 1,x 2,x 3)T :

Ortsvektor

n:

äußerer Einheitsnormalenvektor

Ω:

Gebiet

Ωc :

Komplementärmenge zu Ω

Γ=∂Ω:

Rand des Gebietes

K :

Kompaktum (beschränkte und abgeschlossene Menge)

K n :

n-dimensionaler verallgemeinerter Einheitswürfel

M :

Mannigfaltigkeit

U :

Umgebung

B ɛ (x):

Kugel mit dem Mittelpunkt ξ ∈ ℝ3 und dem Radius ɛ

C 1 :

Calderon-Projektor für das Innengebiet

h :

Gitterparameter

H :

Grobgitterparameter

I:

Einheitsoperator

P:

Differentialoperator des Randwertproblems

R1, R2 :

Matrizen von (tangentialen) Differentialoperatoren

S(x, y − x):

hypersinguläre Fundamentallösung

T(x, y − x):

singuläre Fundamentallösung

U(x, y − x):

schwach singuläre Fundamentallösung

D:

hypersingulärer Integraloperator

K:

singulärer Integraloperator

V:

schwach singulärer Integraloperator

h :

orthogonale Projektion auf V h

S l :

Oberflächenstück mit der Nummer l

V l :

Parametergebiet mit der Nummer l

\(\hat \pi \) :

Referenzelement: \(\hat \pi = \left\{ {z \in \mathbb{R}^2 :0 < z_1 < 1,0 < z_2 < z_1 } \right\}\)

π hi :

geometrisches Randelement mit der Nummer i

ξ(i) :

bijektive Abbildungsfunktion des Refe renzelements \(\hat \pi \) auf das Originalelement π hi

N (n) t , N (n) r :

Basisfunktionen bzgl. des Knotens n

A pq,ij :

verallgemeinerte Elementsteifigkeitsmatrix

N1, N2 :

Formfunktionsmatrizen

M ij :

Massematrix

Literatur

  1. Adams RA (1975) Sobolev Spaces. Academic Press, New York

    MATH  Google Scholar 

  2. Arnold DN, Wendland WL (1983) On the asymptotic convergence of collocation methods. Math. Comp., 41:349–381

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold DN, Wendland WL (1985) The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math., 47:317–341

    Article  MATH  MathSciNet  Google Scholar 

  4. Banerjee PK, Butterfield R (1981) Boundary element methods in engineering science. McGraw Hill Book Company, London

    MATH  Google Scholar 

  5. Banerjee PK, Cathie DN (1988) A direct formulation and numerical implementation of the boundary element method for two-dimensional problems in elastoplasticity. Int. J. Mech. Sci., 22:233–245

    Article  Google Scholar 

  6. Bauer W, Svobota M (1985) Industrial application of the three dimensional boundary element method (BEM) exemplified through the BE-Programmsystem DBETSY-3D. In Brebbia CA, Maier G (eds), Boundary Elements VII — Proceedings of the 7th Int. Conference, Italy, 1985, volume II, pages 14.3–14.20, Berlin, Springer-Verlag

    Google Scholar 

  7. Bausinger R, Kuhn G (1987) Die Boundary-Element-Methode, Theorie und industrielle Anwendung, volume 227 of Kontakt und Studium. Expert-Verlag, Esslingen

    Google Scholar 

  8. Berger H, Warnecke G, Wendland WL (1993) Analysis of a FEM/BEM coupling method for transonic flow computations. Preprint 93-9, Universität Stuttgart, Mathematisches Institut A

  9. Berger HM (1955) A new approach to the analysis of large deflections of plates. J. Appl Mech., 32:465–472

    Google Scholar 

  10. Brandt A, Lubrecht A (1990) Multilevel matrix multiplication and fast solutions of integral equations. J. Comp. Physics, 90:248–270

    MathSciNet  Google Scholar 

  11. Brebbia CA, Nowak AJ (1989) A new approach for transforming domain integrals to the boundary. In Numerical Methods in Engineering, volume 1, Berlin, Springer-Verlag

    Google Scholar 

  12. Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques — theory and applications in engineering. Springer-Verlag, Berlin, New York

    MATH  Google Scholar 

  13. Brebbia CA, Wendland WL, Kuhn G, editors (1987). Boundary Elements IX — Proceedings of th 9th Int. Conference, Stuttgart, volume 1–3, Berlin, Springer-Verlag

    Google Scholar 

  14. Calderón AP, Zygmund A (1952) On the existence of certain singular integrals. Acta Math., 88:85–134

    Article  MATH  MathSciNet  Google Scholar 

  15. Chang CS, Chang Y (1995) Green’s function for elastic medium with general anisotropy. ASME J. Appl. Mech., 62:573–578

    Article  MATH  Google Scholar 

  16. Costabel M (1987) Symmetric methods for the coupling of finite elements and boundary elements. In: Brebbia CA, Wendland WL, Kuhn G (eds), Boundary Elements IX, pages 411–420, Berlin, Springer-Verlag

    Google Scholar 

  17. Costabel M (1988) Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal., 19(3):613–626

    Article  MATH  MathSciNet  Google Scholar 

  18. Costabel M, Ervin VJ, Stephan EP (1988) Experimental convergence rates for various couplings of boundary and finite elements. Preprint 1193, TH Darmstadt, Fachbereich Mathematik

  19. Costabel M, Stephan EP (1985) Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. In: Fiszdon W, Wilmański K (eds), Mathematical Models and Methods in Mechanics, volume 15 of Banach Center Publications, pages 175–251. PWN — Polish Scientific Publishers, Warsaw

    Google Scholar 

  20. Costabel M, Stephan EP (1987) An improved boundary element Galerkin method for three-dimensional crack problems. Integral Equations Oper. Theory, 10:467–504

    Article  MATH  MathSciNet  Google Scholar 

  21. Costabel M, Stephan EP (1988) Coupling of finite element and boundary element methods for an elasto-plastic interface problem. Preprint, Georgia Institute of Technology

  22. Costabel M, Stephan EP (1988) Duality estimates for the numerical solution of integral equations. Numer. Math., 54:339–353

    Article  MATH  MathSciNet  Google Scholar 

  23. Costabel M, Wendland WL (1986) Strong ellipticity of boundary integral operators. J. Reine Angew. Math., 372:34–63

    MATH  MathSciNet  Google Scholar 

  24. Cruse TA (1969) Numerical solutions in three dimensional elastostatics. Int. J. Solids Structures, 5:1259–1274

    Article  MATH  Google Scholar 

  25. Dahmen W, Prössdorf S, Schneider R (1993) Wavelet approximation methods for pseudodifferential equations. Adv. in Comput. Math., 1:259–335

    Article  MATH  Google Scholar 

  26. Dallner R (1993) Behandlung inelastischer 3D-Probleme mittels Randelementmethode. Number 126 in VDI Fortschrittsberichte Reihe 18: Mechanik/Bruchmechanik. VDI-Verlag, Düsseldorf

    Google Scholar 

  27. Dallner R, Kuhn G (1993) Efficient evaluation of volume integrals in the boundary element method. Comp. Meth. Appl. Mech. Engng., 109:95–109

    Article  MATH  MathSciNet  Google Scholar 

  28. Dieudonné J (1978) Eléments d’Analys, Vol VIII. Gauthier-Djaoua

  29. Doblare M (1987) Computational aspects of the boundary element method. In: Brebbia CA (eds), Topics in Boundary Element Research, volume 3, Berlin, Springer-Verlag

    Google Scholar 

  30. Douglis A, Nirenberg L (1955) Interior estimates for elliptic systems of partial differential equations. Commun. Pure Appl. Math., 8:503–538

    Article  MATH  MathSciNet  Google Scholar 

  31. Fichera G (1965) Linear elliptic differential systems and eigenvalue problems, volume 8 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  32. Förster A, Kuhn G (1994) A field boundary element formulation for material nonlinear problems at finite strains. Int. J. Solids Structures, 31:1777–1792

    Article  MATH  Google Scholar 

  33. Gatica GN, Hsiao GC (1989) The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem. Zeitschrift für Analysis und ihre Anwendung, 28:377–387

    MathSciNet  Google Scholar 

  34. Gatica GN, Hsiao GC (1995) Boundary-field equation methods for a class of nonlinear problems, volume 331 of Pitman Research Notes in Mathematics Series. Longman House, Harlow

    Google Scholar 

  35. Gipson GS (1987) Boundary element fundamentals — Basic concepts and recent developments in the Poisson Equation. Computational Mechanics Publication, Southampton

    MATH  Google Scholar 

  36. Grannell JJ (1987) On simplified hybrid methods for coupling of finite elements and boundary elements. In: Brebbia CA, Wendland WL, Kuhn G (eds), Boundary Elements IX, volume 1, pages 447–460, Berlin, Springer

    Google Scholar 

  37. Grisvard P (1985) Boundary value problems in non-smooth domains. Pitman, London

    Google Scholar 

  38. Gründemann H (1991) Randelementmethode in der Festkörpermechanik. Fachbuchverlag, Leipzig

    MATH  Google Scholar 

  39. Hackbusch W (1986) Theorie und Numerik elliptischer Differentialgleichungen. Teubner, Stuttgart

    MATH  Google Scholar 

  40. Hackbusch W (1989) Integralgleichungen: Theorie und Numerik. B. G. Teubner, Stuttgart

    MATH  Google Scholar 

  41. Halphen B, Nguyen QS (1975) Sur les matéraux standard génerallisés. J. de Mécanique, 14:39–63

    MATH  Google Scholar 

  42. Hartmann F (1987) Methode der Randelemente. Boundary Elements in der Mechanik auf dem PC. Springer, Berlin

    MATH  Google Scholar 

  43. Hildenbrand JO (1994) Hypersinguläre Integralgleichungen in der Randelementmethode — Berechnung der Integrale und Anwendung bei linearelastischen Aufgaben. Number 143 in VDI Reihe 18. VDI-Verlag GmbH, Düsseldorf, Dissertation (PhD Thesis)

    Google Scholar 

  44. Holzer SM (1992) Das symmetrische Randelementverfahren: Numerische Realisierung und Kopplung mit der Finite-Element-Methode zur elastoplastischen Strukturanalyse. Berichte aus dem Konstruktiven Ingenieurbau, Technische Universität München

  45. Hörmander L (1966) Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math., 83:129–209

    Article  MathSciNet  Google Scholar 

  46. Hörmander L (1983) The analysis of linear partial differential operators, volume I. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  47. Hsiao GC, MacCamy RC (1973) Solution of boundary value problems by integral equations of the first kind. SIAM Review, 15 (4):687–705

    Article  MATH  MathSciNet  Google Scholar 

  48. Hsiao GC (1988) The coupling of BEM and FEM — a brief review. In: Brebbia CA, et al. (eds), Boundary Elements X, volume I, pages 431–445, Springer

  49. Hsiao GC (1990) The coupling of boundary element and finite element methods. Z. angewandte Math. Mech. (ZAMM), 70:493–503

    Article  MATH  MathSciNet  Google Scholar 

  50. Hsiao GC, Schnack E, Wendland WL (1995) A hybrid coupled finite-boundary element method. Preprint 99-11, Universität Stuttgart, Mathematisches Institut A

  51. Hsiao GC, Wendland WL (1977) A finite element method for some integral equations of the first kind. J. Math. Anal. Appl., 58:449–481

    Article  MATH  MathSciNet  Google Scholar 

  52. Hsiao GC, Wendland WL (1991) Domain decomposition in boundary element methods. In: Glowinski R, et al. (eds), Fourth Int. Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 41–49, Philadelphia, SIAM Publ.

    Google Scholar 

  53. Huber O (1994) Behandlung elastoplastischer 3D-Rißprobleme mittels der Randelementmethode. Number 153 in VDI Fortschrittberichte Reihe 18: Mechanik/Bruchmechanik. VDI-Verlag, Düsseldorf

    Google Scholar 

  54. John F (1955) Plane waves and spherical means applied to partial differential equations. Number 2 in Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers, New York

    Google Scholar 

  55. Johnson J, Nedelec JC (1980) On the coupling of boundary integral and finite element methods. Math. Comp., 35:1063–1079

    Article  MATH  MathSciNet  Google Scholar 

  56. Khoromskij BN, Mazurkevich GE, Zhidkov EP (1990) Domain decomposition method for magnetostatics nonlinear problems in combined formulation. Sov. J. Numer. Anal. Math. Modelling, 5(2):111–136

    Article  MATH  Google Scholar 

  57. Kohn JJ, Nirenberg L (1965) An algebra of pseudodifferential operators. Comm. Pure Appl. Math., 18:269–305

    Article  MATH  MathSciNet  Google Scholar 

  58. Kröner E (1953) Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen. Zeitschrift für Physik, 136:402–410

    Article  MATH  Google Scholar 

  59. Kuhn G, Huber O (1993) Behandlung elastoplastischer Kerb- und Rißprobleme mittels Randelementmethode. 2. Zwischenbericht zum DFG-Projekt: Ku 360/8, Lehrstuhl für Technische Mechanik, Erlangen

    Google Scholar 

  60. Kuhn G, Möhrmann W (1983) Boundary element method in elastostatics: Theory and applications. Appl. Math. Modelling, 7:97–105

    Article  MATH  Google Scholar 

  61. Kupradze VD (1963) Metody potenciala v teorii uprogosti. Fismatgis, Moskau

    Google Scholar 

  62. Kupradze VD, Gegelia TG, Basheleishvili MO, Burchuladze TV (1979) Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Publ. Comp., Amsterdam, New York, Oxford

    MATH  Google Scholar 

  63. Lachat JC, Watson JO (1976) Effective numerical treatment of boundary integral equations: A formulation for three-dimensional elastostatics. Int. J. Numer. Meth. Eng., 10:991–1005

    Article  MATH  Google Scholar 

  64. Lage C (1995) A parallel implementation of 3-D BEM with focus on panel clustering. PhD thesis, Inst. F. Prakt. Math., Universität Kiel (in German)

  65. Lamp U, Schleicher T, Stephan E, Wendland WL (1984) Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem. Computing, 33:269–296

    Article  MATH  MathSciNet  Google Scholar 

  66. Langer U (1994) Parallel iterative solution of symmetric coupled FE/BE-equations via domain decomposition. Contemp. Math., 157(217):335–344

    Google Scholar 

  67. Lemaitre J, Chaboche JL (1985) Mécanique des Matériaux solides. Dunod, Paris

  68. Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover

  69. Maier G, Novati G, Perego U (1988) Plastic analysis by boundary elements. In: Wendland WL, Stein E (eds), Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, pages 213–272, Wien, New York, Springer

    Google Scholar 

  70. Maier G, Polizzotto C (1987) A Galerkin approach to boundary element elastoplastic analysis. Comp. Methods Appl. Mech. Eng., 60:175–194

    Article  MATH  Google Scholar 

  71. Meyer A, Rjasanow S (1990) An effective direct solution method for certain boundary element equations in 3d. Math. Meth. Appl. Sci., 13:43–53

    Article  MATH  MathSciNet  Google Scholar 

  72. Michlin SG (1962) Mnogomernye singularnye integraly i integralnye uravnenij. Fismatgis, Moskau

    Google Scholar 

  73. Mikhlin SG, Morozov NF, Paukshto MV (1995) The integral equations of the theory of elasticity, volume 135 of Teubner-Texte zur Mathematik. Teubner, Stuttgart, Leipzig

    Google Scholar 

  74. Mikhlin SG, Prössdorf S (1986) Singular integral operators. Springer, Berlin

    Google Scholar 

  75. Miranda C (1970) Partial differential equations of elliptic type, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Verlag, Berlin

    Google Scholar 

  76. Möhrmann W, Bauer W (1987) DBETSY — industrial application of the BEM. In: Kuhn G, Brebbia CA, Wendland WL (eds), Boundary Elements IX — Proceedings of the 9th Int. Conference, Stuttgart, volume I, pages 593–607, Berlin, Springer

    Google Scholar 

  77. Möhrmann W, Sahm M (1986) DBETSY-3D, Benutzerhandbuch. Technical report, Daimler-Benz AG, Stuttgart

    Google Scholar 

  78. Mura T (1982) Micromechanics of defects in solids. Nijhoff Publ., Hague, Boston, London

    Google Scholar 

  79. Mußchelischwili NI (1971) Einige Grundaufgaben zur mathematischen Elastizitätstheorie. Fachbuchverlag, Leipzig

    Google Scholar 

  80. Nardini D, Brebbia CA (1982) A new approach to free vibration analysis using boundary elements. In Boundary Element Methods in Engineering, Berlin, New York, Springer

    Google Scholar 

  81. Nedelec J-C, Planchard J (1973) Une méthode variationelle de éléments finis pour la resolution numérique d’un problème extérieur dans R3. RAIRO Anal. Numer., 7:105–129

    MathSciNet  Google Scholar 

  82. Neumann C (1877) Untersuchungen über das logarithmische und Newtonsche Potential. Teubner-Verlag, Leipzig

    Google Scholar 

  83. Neureiter W (1982) Boundary-Element-Programmrealisierung zur Lösung von zwei- und dreidimensionalen thermoelastischen Problemen mit Volumenkräften. Diss., TU München

  84. Nečas J (1967) Les méthodes directes en théorie des équations elliptiques. Masson, Paris

    Google Scholar 

  85. Nowak AJ (1989) The multiple reciprocity method of solving transient heat conduction problems. In Boundary Elements XI, volume 2, Berlin, Springer

    Google Scholar 

  86. Nowak AJ, Brebbia CA (1989) The multiple reciprocity method: A new approach for transforming BEM domain integrals to the boundary. Engng. Analysis, 6:164–167

    Google Scholar 

  87. Ortner N (1980) Regularisierte Faltung von Distributionen. Teil 1 und 2. ZAMP, 31:133–173

    MATH  MathSciNet  Google Scholar 

  88. Ortner N (1987) Methods of construction of fundamental solutions of decomposable linear differential operators. In: Brebbia A, et al (eds), Boundary Elements IX, Proc. of the 9th BEM-Conference, volume 1, pages 79–97, Berlin, Springer

    Google Scholar 

  89. Ortner N (1988) Die Fundamentallösung des Timoshenko- und des Boussinesq-operators. ZAMM, 68:547–553

    Article  MathSciNet  Google Scholar 

  90. Ortner N, Cheung A H-D, Antes H (1994) Fundamental solutions of products of Helmholtz and polyharmonic operators. Engng. Anal with Boundary Elements, 14:187–191

    Article  Google Scholar 

  91. Ortner N, Wagner P (1990) Some new fundamental solutions. J. Math. Meth. Appl. Sci., 12:439–461

    Article  MATH  MathSciNet  Google Scholar 

  92. Ortner N, Wagner P (1992) On the fundamental solution of operator of dynamic linear thermoelasticity. J. Math. Meth. Appl. Sci., pages 524–550

  93. Ortner N, Wagner P (1993) Fundamental solutions of hyperbolic differential operators and the Poisson summation formulae. Integral transforms and special functions, 1:183–196

    Article  MATH  MathSciNet  Google Scholar 

  94. Ortner N, Wagner P (1997) A survey on explicit representation formulae for fundamental solutions of linear partial differential operators. Acta Applic. Math. 47:101–124

    Article  MATH  MathSciNet  Google Scholar 

  95. Owen DRJ, Hinton E (1975) Finite elements in plasticity — Theory and Applications. Pineridge Press, Swansea, UK

    Google Scholar 

  96. Partridge PW, Brebbia CA, Wrobel LC (1992) The dual reciprocity boundary element method. Elsevier Applied Science, London, New York

    MATH  Google Scholar 

  97. Polizzotto C (1987) A symmetric definite BEM formulation for the elastoplastic rate problem. In: Brebbia CA, Wendland WL, Kuhn G (eds), Boundary Elements IX, volume 2, pages 315–334, Berlin, Springer-Verlag

    Google Scholar 

  98. Polizzotto C (1988) A consistent formulation of the BEM within elastoplasticity. In: Cruse TA (eds), Advanced Boundary Element Methods, pages 315–324. Springer, Berlin, Heidelberg

    Google Scholar 

  99. Polizzotto C (1988) An energy approach to the boundary element method. Part I: Elastic solids. Comp. Methods Appl. Mech. Eng., 69:167–184

    Article  MATH  MathSciNet  Google Scholar 

  100. Polizzotto C (1988) A energy approach to the boundary element method. Part II: Elastic-plastic solids. Comput. Meths. Appl. Mech. Engng., 69:263–276

    Article  MATH  MathSciNet  Google Scholar 

  101. Polizzotto C, Panzeca T, Zito M (1992) A consistent boundary/interior element method for evolutive elastic plastic structural analysis. In: Kane JH, et al. (eds), Advances in Boundary Element Techniques. Springer

  102. Polizzotto C, Zito M (1994) Variational formulations for coupled BE/FE methods in elastostatics. Z. angewandte Math, Mech. (ZAMM), 74:533–543

    Article  MATH  MathSciNet  Google Scholar 

  103. Pomp A (1996) Eine Rand-Gebiets-Integralmethode zur numerischen Lösung der Schalengleichungen eines elliptischen Differentialgleichungssystems mit variablen Koeffizienten. Habilitationsschrift, Math. Institut A, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart

  104. Prössdorf S, Schmidt G (1981) A finite element collocation method for singular integral equations. Math. Nachr., 100:33–66

    Article  MATH  MathSciNet  Google Scholar 

  105. Prössdorf S, Silbermann B (1977) Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen. Teubner, Leipzig

    MATH  Google Scholar 

  106. Prössdorf S, Silbermann B (1991) Numerical analysis for integral and related operator equations. Akademie Verlag, Berlin

    Google Scholar 

  107. Rieder G (1968) Mechanische Deutung und Klassifizierung einiger Integralverfahren der ebenen Elastizitätstheorie. Bull. Acad. Pol. Sci., Sci. Technol., 16:101–114

    Google Scholar 

  108. Rieder G (1972) über Eingrenzungsverfahren und Integralgleichungsmethoden für elastische Scheiben, Platten und verwandte Probleme. Wiss. Zeitschrift der Hochschule für Architektur und Bauwesen Weimar, 19:217–222

    Google Scholar 

  109. Rizzo FJ (1967) An integral equation approach to boundary value problems of classical elastostatics. Quart. Appl. Math., 25:83–95

    MATH  Google Scholar 

  110. Rokhlin V (1985) Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60:187–207

    Article  MATH  MathSciNet  Google Scholar 

  111. Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869

    Article  MATH  MathSciNet  Google Scholar 

  112. Saranen J (1988) The convergence of even degree spline collocation solution for potential problems in the plane. Numer. Math., 53:499–512

    Article  MATH  MathSciNet  Google Scholar 

  113. Saranen J, Wendland WL (1985) On the asymptotic convergence of collocation methods with spline functions of even degree. Math. Comp., 45(171):91–108

    Article  MATH  MathSciNet  Google Scholar 

  114. Sauter SA (1992) Über die effiziente Verwendung von Galerkinverfahren zur Lösung Fredholmscher Integralglei-chungen. Dissertation, Universität zu Kiel

  115. Schatz A, Thomée V, Wendland WL (1990) Mathematical theory of finite and boundary element methods. Birkhäuser, Basel

    MATH  Google Scholar 

  116. Schnack E (1984) Stress analysis with a combination of HSM and BEM. In: Whiteman JR (eds), Proc. MAFELAP 1984 Conf. on “The mathematics of Finite Elements and Applications”, pages 273–281, Uxbridge, Academic Press

    Google Scholar 

  117. Schnack E (1987) A hybrid BEM-model. Int. J. Num. Meth. Engng., 24(5):1015–1025

    Article  MATH  Google Scholar 

  118. Schnack E (1990) Macro-elements for 2d- and 3d-elasticity with BEM. In: Tanaka M, Brebbia CA, Honma T (eds), Boundary Elements XII, volume I of Computational Mechanics Publications, pages 21–31, Berlin, Springer

    Google Scholar 

  119. Schnack E, Becker I, Karaosmanoglu N (1990) Three-dimensional coupling of FEM and BEM in elasticity. In: Mang H, Kuhn G (eds), Discretization Methods in Structural Mechanics, pages 415–425, Berlin, Heidelberg, Springer

    Google Scholar 

  120. Schnack E, Carmine R, Karaosmanoglu N (1988) Mixed non-conforming technique for coupling FEM and BEM. In: Atluri SN, Yagawa G (eds), Computational Mechanics ’88, volume 1, pages 5.iii.l-5.iii.4, Berlin, Springer

    Google Scholar 

  121. Schnack E, Türke K (1993) Macroelements constructed with a nonconforming coupling technique of BEM and FEM. In: Casteleiro M, Navarrina F (eds), Proc. 2nd Conf. Num. Meth. Engng., La Coruna, Spain, 1993. In: Métodes Numéricos en Ingenieria, Spain

  122. Schneider S, Bausinger R, Seeger G (1987) Industrial application of the boundary element system BETSY. In: Kuhn G, Brebbia CA, Wendland WL (eds), Boundary Elements IX — Proceedings of the 9th Int. Conference, Stuttgart, 1987, volume I, pages 535–548, Berlin, Springer

    Google Scholar 

  123. Schwab C, Wendland WL (1992) Kernel properties and representation of boundary integral operators. Math. Nachr., 156:187–218

    Article  MATH  MathSciNet  Google Scholar 

  124. Schwab C, Wendland WL (1992) On numerical cubatures of singular surface integrals in boundary element methods. Num. Math., 62:343–369

    Article  MATH  MathSciNet  Google Scholar 

  125. Sirtori S (1979) General stress analysis method by means of integral equations and boundary elements. Meccanica, 14:210–218

    Article  MATH  Google Scholar 

  126. Sloan I (1992) Error analysis of boundary integral methods. Acta Numerica, 1:287–339

    Article  MathSciNet  Google Scholar 

  127. Sobolev SL (1964) Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathematischen Physik. Akademie Verlag, Berlin

    Google Scholar 

  128. Steinbach O, Wendland WL (1995) Efficient preconditioners for boundary element methods and their use in domain decomposition methods. Bericht DFG-Schwerpunkt „Randelementmethoden“ 95-19, Mathematisches Inst. A, Universität Stuttgart

  129. Stephan E, Wendland WL (1976) Remarks to Galerkin and least squares methods with finite elements for general elliptic problems. Manuscripta Geodaetica, 1:93–123

    MATH  Google Scholar 

  130. Stephan E, Wendland WL (1985) An augmented Galerkin procedure for the boundary integral method applied to mixed boundary value problems. Appl. Numer. Math., 1:121–143

    Article  MATH  MathSciNet  Google Scholar 

  131. Stephan EP (1987) Boundary integral equations for mixed boundary value problems in R3. Math. Nachr., 134:21–53

    Article  MATH  MathSciNet  Google Scholar 

  132. Tanaka M, Tanaka K (1981) On new boundary element solution scheme for elastoplasticity. Ing. Arch., 50:289–295

    Article  MATH  Google Scholar 

  133. Telles JCF (1983) The Boundary Element Method applied to inelastic problems, volume 1 of Lecture Notes in Engineering. Springer, Berlin

    Google Scholar 

  134. Triebel H (1978) Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam

    Google Scholar 

  135. Türke K (1995) Eine Zweigitter-Methode zur Kopplung von FEM und BEM. PhD thesis, Fakultät für Maschinenbau, Universität Karlsruhe

  136. Vainikko G (1973) On the question of convergence of the Galerkin method. Tartu Ruekl. Uel. Toimetised, 177:148–152

    MathSciNet  Google Scholar 

  137. Petersdorff T von (1989) Randwertprobleme der Elastizitätstheorie für Polyeder — Singularitäten und Approximation mit Randelementen. PhD thesis, Fachbereich Mathematik der TH Darmstadt

  138. Petersdorff T von, Stephan EP (1990) Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes. Math. Meth. Appl. Sci., 12:229–249

    Article  MATH  Google Scholar 

  139. Wendland W (1965) Lösung der ersten und zweiten Randwertaufgaben des Innen- und Außengebietes für die Potentialgleichung im R3 durch Randbelegungen. Dissertation TU Berlin D 83, Technische Universität Berlin

  140. Wendland W (1968) Die Behandlung von Randwertaufgaben im R3, mit Hilfe von Einfach- und Doppelschichtpotentialen. Num. Math., 11:380–404

    Article  MATH  MathSciNet  Google Scholar 

  141. Wendland WL (1981) Asymptotic convergence of BEM/IEM for mixed boundary value problems. Preprint 611, TH Darmstadt

  142. Wendland WL (1985) On some mathematical aspects of boundary element methods for elliptic problems. In: The Mathematics of Finite Elements and Applications V, pages 193–227. Academic Press, London

    Google Scholar 

  143. Wendland WL (1987) Strongly elliptic boundary integral equations In: Powell M, Iserles A (eds), The State of the Art in Numerical Analysis. Oxford University Press, Oxford

    Google Scholar 

  144. Wendland WL (1988) On asymptotic error estimates for combined BEM and FEM. In: Stein E, Wendland WL (eds), Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, number 301 in CISM, pages 273–333. Springer-Verlag, Wien, New York

    Google Scholar 

  145. Wendland WL (1990) On the coupling of finite elements and boundary elements. In: Kuhn G, Mang H (eds), Discretization methods in structural mechanics, pages 405–414, Berlin, IUTAM/IACM, Springer

    Google Scholar 

  146. Wendland WL (Ed.) (1997) Boundary element topics, Springer, Berlin

    MATH  Google Scholar 

  147. Westphal T, Jr. Pereira JT, de Barcellos CS (1996) On general fundamental solutions of some linear elliptic differential operators. Eng. Anal, with Bound. Elements 17:279–286

    Article  Google Scholar 

  148. Wilson RB, Cruse TA (1978) Efficient implementation of anisotropic three dimensional boundary-integral-equation stress analysis. Int. J. Num. Meth. Engng., 12:1383–1397

    Article  MATH  MathSciNet  Google Scholar 

  149. Wloka J (1982) Partielle Differentialgleichungen (Partial differential equations). B. G. Teubner, Stuttgart

    Google Scholar 

  150. Zienkiewicz OC (1977) The Finite Element Method. McGraw-Hill

Download references

Author information

Authors and Affiliations

Authors

Additional information

Ich möchte besonders den Herren Prof. Dr.-Ing. A. Albers, Prof. Dr. U. Langer, Prof. Dr.-Ing. E. Schnack, Prof. Dr.-Ing. W.L. Wendland und Prof. Dr. J.R. Whiteman für die zahlreichen wertvollen Hinweise und Anregungen herzlich danken, die in der vorliegenden Arbeit eingeflossen sind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrä, H. Einführung in moderne Galerkin-Randeiementmethoden mit einer Anwendung aus dem Maschinenbau. Forsch Ing-Wes 65, 58–90 (1999). https://doi.org/10.1007/PL00010775

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010775

Navigation