Journal of Biological Inorganic Chemistry

, Volume 5, Issue 3, pp 354–363 | Cite as

Interaction of nitric oxide with the oxygen evolving complex of photosystem II and manganese catalase: a comparative study

  • Nikolaos Ioannidis
  • Gert Schansker
  • Vladimir V. Barynin
  • Vasili Petrouleas
Original Article


We compare the interaction of nitric oxide with the S states of the oxygen evolving complex (OEC) of photosystem II and the dinuclear Mn cluster of Thermus thermophilus catalase. Flash fluorescence studies indicate that the S3 state of the OEC in the presence of ca. 0.6 mM NO is reduced to the S1 with an apparent halftime of ca. 0.4 s at about 18°C, compared with a biphasic decay, with approximate halftimes of 28 s for S3 to S2 and 140 s for S2 to S1 in the absence of NO. Under similar conditions the S2 state is reduced by NO to the S1 state with an approximate halftime of 2 s. These results extend a recent study indicating a slow reduction of the S1 state at − 30°C, via the S0 and S−1 states, to a Mn(II)-Mn(III) state resembling the corresponding state in catalase. The reductive mode of action of NO is repeated with the di-Mn cluster of catalase: the Mn(III)-Mn(III) redox state is reduced to the Mn(II)-Mn(II) state via the intermediate Mn(II)-Mn(III) state. The kinetics of this reduction suggest a decreasing reduction potential with decreasing oxidation state, similar to what is observed with the active states of the OEC. What is unique about the OEC is the rapid interaction of NO with the S3 state of the OEC, which is compatible with a metalloradical character of this state.


Catalase Manganese cluster Nitric oxide Photosystem II 





fluorescence level when all PSII reaction centers are in the open state


2-[N-morpholineethanesulfonic acid]


oxygen evolving complex


photosystem II

PSII membranes

thylakoid membrane fragments enriched in PSII

S states

S0–S4 oxidation states of the water oxidizing complex

tyr YZ, tyr YD

the fast and slow tyrosine electron donors of PSII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pecoraro VL (ed) (1992) Manganese redox enzymes. VCH, New YorkGoogle Scholar
  2. 2.
    Rutherford AW (1989) Trends Biochem Sci 14: 227–232PubMedCrossRefGoogle Scholar
  3. 3.
    Debus RJ (1992) Biochim Biophys Acta 1102: 269–352PubMedCrossRefGoogle Scholar
  4. 4.
    Diner BA, Babcock GT (1996) In: Ort RD, Yocum CF (eds) Advances in photosynthesis, vol 4. Kluwer, Dordrecht, pp 213–247Google Scholar
  5. 5.
    Bricker TM, Ghanotakis DF (1996) In: Ort RD, Yocum CF (eds) Advances in photosynthesis, vol 4. Kluwer, Dordrecht, pp 113–136Google Scholar
  6. 6.
    Britt RD (1996) In: Ort RD, Yocum CF (eds) Advances in photosynthesis, vol 4. Kluwer, Dordrecht, pp 137–164Google Scholar
  7. 7.
    Barynin VV, Grebenco AI (1986) Dokl Akad Sci USSR 286: 461–464Google Scholar
  8. 8.
    Kono Y, Fridovich I (1983) J Biol Chem 258: 6015–6019PubMedGoogle Scholar
  9. 9.
    Khangulov SV, Barynin VV, Antonyuk-Barynina SV (1990) Biochim Biophys Acta 1020: 25–33CrossRefGoogle Scholar
  10. 10.
    Waldo GS, Fronko RM, Penner-Hahn JE (1991) Biochemistry 30: 10486–10490PubMedCrossRefGoogle Scholar
  11. 11.
    Khangulov SV, Barynin VV, Voevodskaya NV, Grebenco AI (1990) Biochim Biophys Acta 1020: 305–310CrossRefGoogle Scholar
  12. 12.
    Zheng M, Khangulov SV, Dismukes GC, Barynin VV (1994) Inorg Chem 33: 382–387CrossRefGoogle Scholar
  13. 13.
    Waldo GS, Penner-Hahn JE (1995) Biochemistry 34: 1507–1512PubMedCrossRefGoogle Scholar
  14. 14.
    Schansker G, Petrouleas V (1998) In: G. Garab (ed) Photosynthesis: mechanisms and effects, vol 2. Kluwer, Dordrecht, pp 1319–1322Google Scholar
  15. 15.
    Sarrou J, Ioannidis N, Deligiannakis Y, Petrouleas V (1998) Biochemistry 37: 3581–3587PubMedCrossRefGoogle Scholar
  16. 16.
    Ioannidis N, Sarrou J, Schansker G, Petrouleas V (1998) Biochemistry 37: 16445–16451PubMedCrossRefGoogle Scholar
  17. 17.
    Berthold DA, Babcock GT, Yocum CF (1981) FEBS Lett 134: 231–234CrossRefGoogle Scholar
  18. 18.
    Ford RC, Evans MCW (1983) FEBS Lett 160: 159–164CrossRefGoogle Scholar
  19. 19.
    Kramer DM, Robinson HR, Crofts AR (1990) Photosynth Res 26: 181–193PubMedCrossRefGoogle Scholar
  20. 20.
    Delosme R (1972) In: Forti G, Avron M, Melandri A (eds) Proceedings of the 2nd international congress on photosynthesis research, vol 1. Junk, The Hague, pp 187–195Google Scholar
  21. 21.
    Diner BA, Petrouleas V (1990) Biochim Biophys Acta 1015: 141–149Google Scholar
  22. 22.
    Bowes JM, Crofts AR (1980) Biochim Biophys Acta 590: 373–384PubMedCrossRefGoogle Scholar
  23. 23.
    Kurreck J, Renger G (1998) In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 2. Kluwer, Dordrecht, pp 1157–1160Google Scholar
  24. 24.
    Tinoco I, Sauer K, Wang JC (1978) Physical chemistry. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  25. 25.
    Goussias C, Ioannidis N, Petrouleas V (1997) Biochemistry 36: 9261–9566PubMedCrossRefGoogle Scholar
  26. 26.
    Matsukawa T, Mino H, Yoneda D, Kawamori A (1999) Biochemistry 38: 4072–4077PubMedCrossRefGoogle Scholar
  27. 27.
    Zheng M, Dismukes GC (1996) Inorg Chem 35: 3307–3319PubMedCrossRefGoogle Scholar
  28. 28.
    Yachandra VK, Sauer K, Klein MP (1996) Chem Rev 96: 2927–2950PubMedCrossRefGoogle Scholar
  29. 29.
    Ono T, Nogushi T, Inoue Y, Kusunoki MT, Matsushita T, Oyanagi H (1992) Science 258: 1335–1337PubMedCrossRefGoogle Scholar
  30. 30.
    Iuzzolino L, Dittmer J, Doerner W, Meyer-Klaucke H, Dau H (1998) Biochemistry 37: 17112–17119PubMedCrossRefGoogle Scholar
  31. 31.
    Styring SA, Rutherford AW (1988) Biochemistry 27: 4915–4923CrossRefGoogle Scholar
  32. 32.
    Siegbahn PEM, Crabtree RH (1999) J Am Chem Soc 121: 117–127CrossRefGoogle Scholar
  33. 33.
    Haumann M, Junge W (1999) Biochim Biophys Acta 1411: 86–91PubMedCrossRefGoogle Scholar
  34. 34.
    Petrouleas V, Diner BA (1990) Biochim Biophys Acta 1015: 131–140CrossRefGoogle Scholar
  35. 35.
    Sanakis Y, Goussias C, Mason RP, Petrouleas V (1997) Biochemistry 36: 1411–1417PubMedCrossRefGoogle Scholar
  36. 36.
    Szalai VA, Brudvig GW (1996) Biochemistry 35: 15080–15087PubMedCrossRefGoogle Scholar
  37. 37.
    Diner BA, Petrouleas V (1987) Biochim Biophys Acta 895: 107–125CrossRefGoogle Scholar
  38. 38.
    Styring S, Rutherford AW (1988) Biochim Biophys Acta 933: 378–387CrossRefGoogle Scholar
  39. 39.
    Messinger J, Renger G (1990) FEBS Lett 277: 141–146PubMedCrossRefGoogle Scholar
  40. 40.
    Dexheimer SL, Klein MP (1992) J Am Chem Soc 114: 2821–2826CrossRefGoogle Scholar
  41. 41.
    Yamauchi T, Mino H, Matsukawa T, Kawamori A, Ono T (1997) Biochemistry 36: 7520–7526PubMedCrossRefGoogle Scholar
  42. 42.
    Campbell KA, Gregor W, Pham DP, Peloquin JM, Debus RJ, Britt RD (1998) Biochemistry 37: 5039–5045PubMedCrossRefGoogle Scholar
  43. 43.
    Messinger J, Nugent JHA, Evans MCW (1997) Biochemistry 36: 11055–11060PubMedCrossRefGoogle Scholar
  44. 44.
    Åhrling KA, Peterson S, Styring S (1997) Biochemistry 36: 13148–13152PubMedCrossRefGoogle Scholar
  45. 45.
    Messinger J, Robblee JH, Wa On Yu, Sauer K, Yachandra VK, Klein MP (1997) J Am Chem Soc 119: 11349–11350CrossRefGoogle Scholar
  46. 46.
    Vass I, Styring S (1991) Biochemistry 30: 830–839PubMedCrossRefGoogle Scholar
  47. 47.
    Shinkarev VP, Wraight CA (1993) Proc Natl Acad Sci USA 90: 1834–1838PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Yoder DW, Hwang J, Penner-Hahn JE (2000) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 37. Dekker, New York, pp (in press)Google Scholar
  49. 49.
    Whittaker MM, Barynin VV, Antonyuk SV, Whittaker JW (1999) Biochemistry 38: 9126–9136PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2000

Authors and Affiliations

  • Nikolaos Ioannidis
    • 1
  • Gert Schansker
    • 1
  • Vladimir V. Barynin
    • 2
    • 3
  • Vasili Petrouleas
    • 1
  1. 1.Institute of Materials ScienceNCSR DemokritosAthensGreece
  2. 2.Department of Molecular Biology and BiotechnologyThe University of SheffieldSheffieldUK
  3. 3.Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations