Skip to main content
Log in

Kinetics and mechanism for reduction of anticancer-active tetrachloroam(m)ine platinum(IV) compounds by glutathione

  • Original Article
  • Published:
Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Glutathione (GSH) reduction of the anticancer-active platinum(IV) compounds trans-[PtCl4(NH3)(thiazole)] (1), trans-[PtCl4(cha)(NH3)] (2), cis-[PtCl4(cha)(NH3)] (3) (cha=cyclohexylamine), and cis-[PtCl4(NH3)2] (4) has been investigated at 25 °C in a 1.0 M aqueous medium at pH 2.0–5.0 (1) and 4.5–6.8 (2–4) using stopped-flow spectrophotometry. The redox reactions follow the second-order rate law d[Pt(IV)]/dt=k[GSH] tot[Pt(IV)], where k is a pH-dependent rate constant and [GSH] tot the total concentration of glutathione. The reduction takes place via parallel reactions between the platinum(IV) complexes and the various protolytic species of glutathione. The pH dependence of the redox kinetics is ascribed to displacement of these protolytic equilibria. The thiolate species GS is the major reductant under the reaction conditions used. The second-order rate constants for reduction of compounds 1–4 by GS are (1.43±0.01)×107, (3.86±0.03)×106, (1.83±0.01)×106, and (1.18±0.01)×106 M−1 s−1, respectively. Rate constants for reduction of 1 by the protonated species GSH are more than five orders of magnitude smaller. The mechanism for the reductive elimination reactions of the Pt(IV) compounds is proposed to involve an attack by glutathione on one of the mutually trans coordinated chloride ligands, leading to two-electron transfer via a chloride-bridged activated complex. The kinetics results together with literature data indicate that platinum(IV) complexes with a trans Cl-Pt-Cl axis are reduced rapidly by glutathione as well as by ascorbate. In agreement with this observation, cytotoxicity profiles for such complexes are very similar to those for the corresponding platinum(II) product complexes. The rapid reduction within 1 s of the platinum(IV) compounds with a trans Cl-Pt-Cl axis to their platinum(II) analogs does not seem to support the strategy of using kinetic inertness as a parameter to increase anticancer activity, at least for this class of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

cha:

cyclohexylamine

dach:

±trans-1,2-diaminocyclohexane

GSH:

glutathione

RSH:

thiol

Tz:

thiazole

References

  1. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Nature 222:385–386

    Article  CAS  PubMed  Google Scholar 

  2. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    Article  CAS  PubMed  Google Scholar 

  3. Reedijk J (1999) Chem Rev 99:2499–2510

    Article  CAS  PubMed  Google Scholar 

  4. Gelasco A, Lippard SJ (1999) In: Clarke MJ, Sadler PJ (eds) Topics in biological inorganic chemistry, vol 1. Springer, Berlin Heidelberg New York, pp 73–98

    Google Scholar 

  5. Bramwell VHC, Crowther D, O’Malley S, Swindell R, Johnson R, Cooper EH, Thatcher N, Howell A (1985) Cancer Treat Rep 69:409–416

    CAS  PubMed  Google Scholar 

  6. Pendyala L, Cowens JW, Chedda GB, Dutta SP, Creaven PJ (1988) Cancer Res 48:3533–3536

    CAS  PubMed  Google Scholar 

  7. Rahman A, Roh JK, Wolpert-DeFilippes MK, Goldin A, Venditti JM, Woolley PV (1988) Cancer Res 48:1745–1752

    CAS  PubMed  Google Scholar 

  8. Giandomenico CM, Abrams MJ, Murrer BA, Vollano JF, Rheinheimer MI, Wyer SB, Bossard GE, Higgs III JD (1995) Inorg Chem 34:1015–1021

    Article  CAS  PubMed  Google Scholar 

  9. Barnard CFJ, Raynaud FI, Kelland LR (1999) In: Clarke MJ, Sadler PJ (eds) Topics in biological inorganic chemistry, vol 1. Springer, Berlin Heidelberg New York, pp 45–71

  10. Ferrante K, Winograd B, Canetta R (1999) Cancer Chemother Pharmacol 43:S61–68

    Article  CAS  PubMed  Google Scholar 

  11. Farrell N (1996) In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 32. Dekker, New York, pp 603–639

    CAS  PubMed  Google Scholar 

  12. Natile G, Coluccia M (1999) In: Clarke MJ, Sadler PJ (eds) Topics in biological inorganic chemistry, vol 1. Springer, Berlin Heidelberg New York, pp 45–71

    Google Scholar 

  13. Van Beusichem M, Farrell N (1992) Inorg Chem 31:634–639

    Article  Google Scholar 

  14. Kelland LR, Barnard CFJ, Evans IG, Murrer BA, Theobald BRC, Wyer SB, Goddard PM, Jones M, Valenti M, Bryant A, Rogers PM, Harrap KR (1995) J Med Chem 38:3016–3024

    Article  CAS  PubMed  Google Scholar 

  15. Bierbach U, Qu Y, Hambley TW, Peroutka J, Nguyen HL, Doedee M, Farrell N (1999) Inorg Chem 38:3535–3542

    Article  CAS  PubMed  Google Scholar 

  16. Roat R, Reedijk J (1993) J Inorg Biochem 52:263–274

    Article  CAS  Google Scholar 

  17. Roat R, Jerardi MJ, Kopai CB, Heath DC, Clark JA, DeMars JA, Weaver JM, Bezemer E, Reedijk J (1997) J Chem Soc Dalton Trans 3615–3621

    Google Scholar 

  18. Rotondo E, Fimiani V, Cavallaro A, Ainis T (1983) Tumori 69:31–36

    CAS  PubMed  Google Scholar 

  19. Blatter EE, Vollano JF, Krishnan BS, Dabrowiak JC (1984) Biochemistry 23:4817–4820

    Article  CAS  PubMed  Google Scholar 

  20. Eastman A (1987) Biochem Pharmacol 36:4177–4178

    Article  CAS  PubMed  Google Scholar 

  21. Pendyala L, Arakali AV, Sansone P, Cowens JW, Creaven PJ (1990) Cancer Chemother Pharmacol 27:248–250

    Article  CAS  PubMed  Google Scholar 

  22. Talman EG, Brüning W, Reedijk J, Spek AL, Veldman N (1997) Inorg Chem 36:854–861

    Article  CAS  Google Scholar 

  23. Shi T, Berglund J, Elding LI (1996) Inorg Chem 35:3498–3503

    Article  CAS  Google Scholar 

  24. Shi T, Berglund J, Elding LI (1997) J Chem Soc Dalton Trans 2073–2077

    Google Scholar 

  25. Lemma K, Shi T, Elding LI (2000) Inorg Chem 39: (in press)

  26. Chen L, Lee PF, Ranford JD, Vittal JJ, Wong SY (1999) J Chem Soc Dalton Trans 1209–1212

    Google Scholar 

  27. Choi S, Filotto C, Bisanzo M, Delaney S, Lagasee D, Witworth JL, Jusko A, Li C, Wood NA, Willingham J, Schwenker A, Spaulding K (1998) Inorg Chem 37:2500–2504

    Article  CAS  Google Scholar 

  28. Lemma K, Sargeson AM, Elding LI (2000) J Chem Soc Dalton Trans 1167–1172

    Google Scholar 

  29. Pendyala L, Krishnan BS, Walsh JR, Arakali AV, Cowens JW, Creaven PJ (1988) Cancer Chemother Pharmacol 25:10–14

    Article  Google Scholar 

  30. Chaney SG, Wyrick S, Till GK (1990) Cancer Res 50:4539–4545

    CAS  PubMed  Google Scholar 

  31. Ellis LT, Er HM, Hambley TW (1995) Aust J Chem 48:793–806

    Article  CAS  Google Scholar 

  32. Lempers ELM, Inagaki K, Reedijk J (1988) Inorg Chim Acta 152:201–207

    Article  CAS  Google Scholar 

  33. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6870

    Article  CAS  Google Scholar 

  34. Eastman A, Barry MA (1987) Biochemistry 26:3303–3307

    Article  CAS  PubMed  Google Scholar 

  35. Taylor JE, Yan JF, Wang JI (1966) J Am Chem Soc 88:1663–1667

    Article  CAS  PubMed  Google Scholar 

  36. Bridgart GJ, Wilson IR (1973) J Chem Soc Dalton Trans 1281–1284

    Google Scholar 

  37. Ehrenberg L, Harms-Ringdahl M, Fedorcak I, Granath F (1989) Acta Chem Scand 43:177–187

    Article  CAS  Google Scholar 

  38. Appleton TG, Connor JW, Hall JR, Prenzler PD (1989) Inorg Chem 28:2030–2037

    Article  CAS  Google Scholar 

  39. Berners-Price SJ, Kuchel PW (1990) J Inorg Biochem 38:305–326

    Article  CAS  Google Scholar 

  40. Djuran MI, Lempers ELM, Reedijk J (1991) Inorg Chem 30:2648–2652

    Article  CAS  Google Scholar 

  41. Rabenstein DL (1973) J Am Chem Soc 95:2797–2803

    Article  CAS  Google Scholar 

  42. Mason WR (1972) Coord Chem Rev 7:241–255

    Article  CAS  Google Scholar 

  43. Wilmarth WK, Fanchiang Y-T, Byrd JE (1983) Coord Chem Rev 51:141–153

    Article  CAS  Google Scholar 

  44. Chandayot P, Fanchiang Y-T (1985) Inorg Chem 24:3532–3534

    Article  CAS  Google Scholar 

  45. Chandayot P, Fanchiang Y-T (1985) Inorg Chem 24:3535–3537

    Article  CAS  Google Scholar 

  46. Peloso A, Dolcetti G, Ettorre R (1967) Inorg Chim Acta 1:403–406

    Article  CAS  Google Scholar 

  47. Peloso A, Ettorre R, Dolcetti G (1967) Inorg Chim Acta 1:307–310

    Article  CAS  Google Scholar 

  48. Elding LI, Gustafson L (1976) Inorg Chim Acta 19:165–171

    Article  CAS  Google Scholar 

  49. Elding LI, Gustafson L (1977) Inorg Chim Acta 24:239–246

    Article  CAS  Google Scholar 

  50. Drougge L, Elding LI (1986) Inorg Chim Acta 121:175–183

    Article  CAS  Google Scholar 

  51. Berglund J, Voigt R, Fronaeus S, Elding LI (1994) Inorg Chem 33:3346–3353

    Article  CAS  Google Scholar 

  52. Shi T, Elding LI (1998) Inorg Chim Acta 282:55–60

    Article  CAS  Google Scholar 

  53. Wilmarth WK, Dooley MM, Byrd JE (1983) Coord Chem Rev 51:125–139

    Article  CAS  Google Scholar 

  54. Allison WS (1976) Acc Chem Res 9:293–299

    Article  CAS  Google Scholar 

  55. Szajewski RP, Whitesides GM (1980) J Am Chem Soc 102:2011–2026

    Article  CAS  Google Scholar 

  56. Farrell N, Kelland LR, Roberts JD, van Beusichem M (1992) Cancer Res 52:5065–5072

    CAS  PubMed  Google Scholar 

  57. Gibbons GR, Wyrick S, Chaney SG (1989) Cancer Res 49:1402–1407

    CAS  PubMed  Google Scholar 

  58. Evans DJ, Green M (1987) Inorg Chim Acta 130:183–184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars I. Elding.

Additional information

Supplementary material. Tables S1-S7 are available in electronic form on Springer-Verlag’s server at http://link.springer.de/journals/jbic/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemma, K., Berglund, J., Farrell, N. et al. Kinetics and mechanism for reduction of anticancer-active tetrachloroam(m)ine platinum(IV) compounds by glutathione. JBIC 5, 300–306 (2000). https://doi.org/10.1007/PL00010658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010658

Key words

Navigation