, Volume 18, Issue 4, pp 530–543 | Cite as

A Flexible Algorithm for Generating All the Spanning Trees in Undirected Graphs

  • T. Matsui


In this paper we propose an algorithm for generating all the spanning trees in undirected graphs. The algorithm requires O (n+m+ τ n) time where the given graph has n vertices, m edges, and τ spanning trees. For outputting all the spanning trees explicitly, this time complexity is optimal.

Our algorithm follows a special rooted tree structure on the skeleton graph of the spanning tree polytope. The rule by which the rooted tree structure is traversed is irrelevant to the time complexity. In this sense, our algorithm is flexible.

If we employ the depth-first search rule, we can save the memory requirement to O (n+m). A breadth-first implementation requires as much as O (m+ τ n) space, but when a parallel computer is available, this might have an advantage. When a given graph is weighted, the best-first search rule provides a ranking algorithm for the minimum spanning tree problem. The ranking algorithm requires O (n+ m + τ n) time and O (m+ τ n) space when we have a minimum spanning tree.

Key words. Enumeration problem, Spanning tree. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© 1997 Springer-Verlag New York Inc.

Authors and Affiliations

  • T. Matsui
    • 1
  1. 1.Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan.

Personalised recommendations