Advertisement

Bioprocess Engineering

, Volume 22, Issue 1, pp 85–93 | Cite as

Issues regarding artificial neural network modeling for reactors and fermenters

  • V. C. P. Chen
  • D. K. Rollins
Article

Abstract

In recent years researchers in many areas have used artificial neural networks (ANNs) to model a variety of physical relationships. While in many cases this selection appears sound and reasonable, one must remember than ANN modeling is an empirical modeling technique (based on data) and is subject to the limitations of such techniques. Poor prediction occurs when the training data set does not contain adequate “information” to model a dynamic process. Using data from a simulated continuous-stirred tank reactor, this paper illustrates four scenarios: (1) steady state, (2) large process time constant, (3) infrequent sampling, and (4) variable sampling rate. The first scenario is typical of simulation studies while the other three incorporate attributes found in real plant data. For the cases in which ANNs predicted well, linear regression (LR), one of the oldest empirical modeling techniques, predicted equally well, and when LR failed to accurately model/predict the data, ANNs predicted poorly. Since real plant data would resemble a combination of situations (2), (3), and (4), it is important to understand that empirical models are not necessarily appropriate for predictively modeling dynamic processes in practice.

Keywords

Training Data Artificial Neural Network Network Modeling Dynamic Process Empirical Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • V. C. P. Chen
    • 1
  • D. K. Rollins
    • 2
  1. 1.School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332GE
  2. 2.Departments of Chemical Engineering and Statistics, Iowa State University, Ames, Iowa 50011US

Personalised recommendations