Advertisement

Distributed Computing

, Volume 14, Issue 2, pp 101–111 | Cite as

How to reconcile fault-tolerant interval intersection with the Lipschitz condition

  • Ulrich Schmid
  • Klaus Schossmaier
Orignial articles

Summary.

We present a new fault-tolerant intersection function \({\boldmath{\cal F}}\), which satisfies the Lipschitz condition for the uniform metric and is optimal among all functions with this property. \({\boldmath{\cal F}}\) thus settles Lamport's question about such a function raised in [5]. Our comprehensive analysis reveals that \({\boldmath{\cal F}}\) has exactly the same worst-case performance as the optimal Marzullo function \({\boldmath{\cal M}}\), which does not satisfy a Lipschitz condition. The utilized modelling approach in conjunction with a powerful hybrid fault model ensures compatibility of our results with any known application framework, including replicated sensors and clock synchronization.

Key words: Fault-tolerant interval intersection – Marzullo function – Hybrid fault models – Interval-based clock synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ulrich Schmid
    • 1
  • Klaus Schossmaier
    • 1
  1. 1.Technische Universität Wien, Department of Automation, Treitlstrasse 1, 1040 Vienna, Austria (e-mail: s@auto.tuwien.ac.at and Klaus.Schossmaier@cern.ch) AT

Personalised recommendations