Skip to main content
Log in

Potentially active copies of the gypsy retroelement are confined to the y chromosome of some strains of drosophila melanogaster possibly as the result of the female-specific effect of the flamenco gene

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Gypsy is an endogenous retrovirus present in the genome of Drosophila melanogaster. This element is mobilized only in the progeny of females which contain active gypsy elements and which are homozygous for permissive alleles of a host gene called flamenco (flam). Some data strongly suggest that gypsy elements bearing a diagnostic HindIII site in the central region of the retrovirus body represent a subfamily that appears to be much more active than elements devoid of this site. We have taken advantage of this structural difference to assess by the Southern blotting technique the genomic distribution of active gypsy elements. In some of the laboratory Drosophila stocks tested, active gypsy elements were found to be restricted to the Y chromosome. Further analyses of 14 strains tested for the permissive vs. restrictive status of their flamenco alleles suggest that the presence of permissive alleles of flam in a stock tends to be associated with the confinement of active gypsy elements to the Y chromosome. This might be the result of the female-specific effect of flamenco on gypsy activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bayev AJ, Lyubomirskaya NV, Dzhuraagaliev EB, Ananiev EV, Araiantova IG, Ilyin YV (1984) Structural organization of transposable element mdg4 from Drosophila melanogaster and a nucleotide sequence of its long terminal repeats. Nucleic Acids Res 12:3707–3723

    Article  PubMed  CAS  Google Scholar 

  • Bucheton A (1995) The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet 11: 349–353

    Article  PubMed  CAS  Google Scholar 

  • Carmena M, Gonzalez C (1995) Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103: 676–684

    Article  PubMed  CAS  Google Scholar 

  • Di Franco C, Pisano C, Dimitri P, Gigliotti S, Junakovic N (1989) Genomic distribution of copia-like transposable elements in somatic tissues and during development of Drosophila melanogaster. Chromosoma 98:402–410

    Article  PubMed  Google Scholar 

  • Di Franco C, Terrinoni A, Dimitri P, Junakovic N (1997) Intragenomic distribution and stability of transposable elements in euchromatin and heterochromatin of Drosophila melanogaster: elements with inverted repeats Bari I, hobo and pogo. J Mol Evol (in press)

  • Freund R, Meselson M (1984) LTR nucleotide sequence and specific insertion of the gypsy transposon. Proc Natl Acad Sci USA 81: 4462–4464

    Article  PubMed  CAS  Google Scholar 

  • Gans M, Audit C, Masson M (1975) Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics. 81:683–704

    PubMed  CAS  Google Scholar 

  • Ilyin YV, Lyubomirskaya NV, Kim AI (1991) Retrotransposon Gypsy and genetic instability in Drosophila (review). Genetica 85:13–22

    Article  PubMed  CAS  Google Scholar 

  • Kim AI, Belyaeva ES, Aslanian MM (1990) Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol Gen Genet 224:303–308

    Article  PubMed  CAS  Google Scholar 

  • Kim AI, Lyubomirskaya NV, Belyaeva ES, Shostack NG, Ilyin YV (1994) The introduction of a transpositionally active copy of retrotransposon GYPSY into the Stable Strain of Drosophila melanogaster causes genetic instability. Mol Gen Genet 242:472–477

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DT, Woods DF, Andrew DJ (1981) Deletion analysis of the tumorous-head (tuh-3) gene in Drosophila melanogaster. Genetics 99:99–107

    PubMed  CAS  Google Scholar 

  • Lambertsson A, Andersson S, Johansson T (1989) Cloning and characterization of variable-sized gypsy mobile elements in Drosophila melanogaster. Plasmid 22:22–31

    Article  PubMed  CAS  Google Scholar 

  • Lim JK, Simmons MJ, Raymond JD, Cox NM, Doll RF, Culbert TP (1983) Homologue destabilization by a putative transposable element in Drosophila melanogaster. Proc Natl Acad Sci USA 80: 6624–6627

    Article  PubMed  CAS  Google Scholar 

  • Lyubomirskaya NV, Arkhipova IR, Ilyin YV, Kim AI (1990) Molecular analysis of the gypsy (mdg4) retrotransposon in two Drosophila melanogaster strains differing by genetic instability. Mol Gen Genet 223:305–309

    Article  PubMed  CAS  Google Scholar 

  • Marlor RL, Parkhurst SM, Corces VG (1986) The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol 6:1129–1134

    PubMed  CAS  Google Scholar 

  • Mizrokhi LJ, Obolenkova LA, Priimagi AF, Ilyin YV, Gerasimova TI, Georgiev GP (1985) The nature of unstable insertion mutations and reversions in the locus cut of Drosophila melanogaster: molecular mechanism of transposition memory. EMBO J 4:3781–3787

    PubMed  CAS  Google Scholar 

  • Peifer M, Bender W (1988) Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. Proc Natl Acad Sci USA 85:9650–9654

    Article  PubMed  CAS  Google Scholar 

  • Pélisson A, Teysset L, Chalvet F, Kim A, Prud’homme N, Terzian C, Bucheton A (1997) About the origin of retroviruses and the coevolution of the gypsy retrovirus with the Drosophila flamenco host gene. Genetica (in press)

  • Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808

    Article  PubMed  CAS  Google Scholar 

  • Prud’homme N, Gans M, Masson M, Terzian C, Bucheton A (1995) Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139:697–711

    PubMed  CAS  Google Scholar 

  • Sheen F, Lim JK, Simmons MJ (1993) Genetic instability in Drosophila melanogaster mediated by hobo transposable elements. Genetics 133:315–334

    PubMed  CAS  Google Scholar 

  • Smith PA, Corces VG (1995) The suppressor of Hairy-wing protein regulates the tissue-specific expression of the Drosophila gypsy retrotransposon. Genetics 139:215–228

    PubMed  CAS  Google Scholar 

  • Terrinoni A, Di Franco C, Dimitri P, Junakovic N (1997) Intragenomic distribution and stability of transposable elements in euchromatin and heterochromatin of Drosophila melanogaster: non-LTR retrotransposon. J Mol Evol 45:145–153

    Article  PubMed  CAS  Google Scholar 

  • Vaury C, Bucheton A, Pelisson A (1989) The beta heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98:215–224

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Spradling AC (1995) The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics 139:659–670

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Bucheton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalvet, F., di Franco, C., Terrinoni, A. et al. Potentially active copies of the gypsy retroelement are confined to the y chromosome of some strains of drosophila melanogaster possibly as the result of the female-specific effect of the flamenco gene. J Mol Evol 46, 437–441 (1998). https://doi.org/10.1007/PL00006323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006323

Key words

Navigation