Advertisement

Journal of Molecular Evolution

, Volume 46, Issue 4, pp 437–441 | Cite as

Potentially active copies of the gypsy retroelement are confined to the y chromosome of some strains of drosophila melanogaster possibly as the result of the female-specific effect of the flamenco gene

  • Fabienne Chalvet
  • Carmen di Franco
  • Alessandro Terrinoni
  • Alain Pelisson
  • Nikolaj Junakovic
  • Alain Bucheton
Articles

Abstract

Gypsy is an endogenous retrovirus present in the genome of Drosophila melanogaster. This element is mobilized only in the progeny of females which contain active gypsy elements and which are homozygous for permissive alleles of a host gene called flamenco (flam). Some data strongly suggest that gypsy elements bearing a diagnostic HindIII site in the central region of the retrovirus body represent a subfamily that appears to be much more active than elements devoid of this site. We have taken advantage of this structural difference to assess by the Southern blotting technique the genomic distribution of active gypsy elements. In some of the laboratory Drosophila stocks tested, active gypsy elements were found to be restricted to the Y chromosome. Further analyses of 14 strains tested for the permissive vs. restrictive status of their flamenco alleles suggest that the presence of permissive alleles of flam in a stock tends to be associated with the confinement of active gypsy elements to the Y chromosome. This might be the result of the female-specific effect of flamenco on gypsy activity.

Key words

Drosophila melanogaster Retrovirus Genomic organization Y chromosome Heterochromatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayev AJ, Lyubomirskaya NV, Dzhuraagaliev EB, Ananiev EV, Araiantova IG, Ilyin YV (1984) Structural organization of transposable element mdg4 from Drosophila melanogaster and a nucleotide sequence of its long terminal repeats. Nucleic Acids Res 12:3707–3723PubMedCrossRefGoogle Scholar
  2. Bucheton A (1995) The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet 11: 349–353PubMedCrossRefGoogle Scholar
  3. Carmena M, Gonzalez C (1995) Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103: 676–684PubMedCrossRefGoogle Scholar
  4. Di Franco C, Pisano C, Dimitri P, Gigliotti S, Junakovic N (1989) Genomic distribution of copia-like transposable elements in somatic tissues and during development of Drosophila melanogaster. Chromosoma 98:402–410PubMedCrossRefGoogle Scholar
  5. Di Franco C, Terrinoni A, Dimitri P, Junakovic N (1997) Intragenomic distribution and stability of transposable elements in euchromatin and heterochromatin of Drosophila melanogaster: elements with inverted repeats Bari I, hobo and pogo. J Mol Evol (in press)Google Scholar
  6. Freund R, Meselson M (1984) LTR nucleotide sequence and specific insertion of the gypsy transposon. Proc Natl Acad Sci USA 81: 4462–4464PubMedCrossRefGoogle Scholar
  7. Gans M, Audit C, Masson M (1975) Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics. 81:683–704PubMedGoogle Scholar
  8. Ilyin YV, Lyubomirskaya NV, Kim AI (1991) Retrotransposon Gypsy and genetic instability in Drosophila (review). Genetica 85:13–22PubMedCrossRefGoogle Scholar
  9. Kim AI, Belyaeva ES, Aslanian MM (1990) Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol Gen Genet 224:303–308PubMedCrossRefGoogle Scholar
  10. Kim AI, Lyubomirskaya NV, Belyaeva ES, Shostack NG, Ilyin YV (1994) The introduction of a transpositionally active copy of retrotransposon GYPSY into the Stable Strain of Drosophila melanogaster causes genetic instability. Mol Gen Genet 242:472–477PubMedCrossRefGoogle Scholar
  11. Kuhn DT, Woods DF, Andrew DJ (1981) Deletion analysis of the tumorous-head (tuh-3) gene in Drosophila melanogaster. Genetics 99:99–107PubMedGoogle Scholar
  12. Lambertsson A, Andersson S, Johansson T (1989) Cloning and characterization of variable-sized gypsy mobile elements in Drosophila melanogaster. Plasmid 22:22–31PubMedCrossRefGoogle Scholar
  13. Lim JK, Simmons MJ, Raymond JD, Cox NM, Doll RF, Culbert TP (1983) Homologue destabilization by a putative transposable element in Drosophila melanogaster. Proc Natl Acad Sci USA 80: 6624–6627PubMedCrossRefGoogle Scholar
  14. Lyubomirskaya NV, Arkhipova IR, Ilyin YV, Kim AI (1990) Molecular analysis of the gypsy (mdg4) retrotransposon in two Drosophila melanogaster strains differing by genetic instability. Mol Gen Genet 223:305–309PubMedCrossRefGoogle Scholar
  15. Marlor RL, Parkhurst SM, Corces VG (1986) The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol 6:1129–1134PubMedGoogle Scholar
  16. Mizrokhi LJ, Obolenkova LA, Priimagi AF, Ilyin YV, Gerasimova TI, Georgiev GP (1985) The nature of unstable insertion mutations and reversions in the locus cut of Drosophila melanogaster: molecular mechanism of transposition memory. EMBO J 4:3781–3787PubMedGoogle Scholar
  17. Peifer M, Bender W (1988) Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. Proc Natl Acad Sci USA 85:9650–9654PubMedCrossRefGoogle Scholar
  18. Pélisson A, Teysset L, Chalvet F, Kim A, Prud’homme N, Terzian C, Bucheton A (1997) About the origin of retroviruses and the coevolution of the gypsy retrovirus with the Drosophila flamenco host gene. Genetica (in press)Google Scholar
  19. Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808PubMedCrossRefGoogle Scholar
  20. Prud’homme N, Gans M, Masson M, Terzian C, Bucheton A (1995) Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139:697–711PubMedGoogle Scholar
  21. Sheen F, Lim JK, Simmons MJ (1993) Genetic instability in Drosophila melanogaster mediated by hobo transposable elements. Genetics 133:315–334PubMedGoogle Scholar
  22. Smith PA, Corces VG (1995) The suppressor of Hairy-wing protein regulates the tissue-specific expression of the Drosophila gypsy retrotransposon. Genetics 139:215–228PubMedGoogle Scholar
  23. Terrinoni A, Di Franco C, Dimitri P, Junakovic N (1997) Intragenomic distribution and stability of transposable elements in euchromatin and heterochromatin of Drosophila melanogaster: non-LTR retrotransposon. J Mol Evol 45:145–153PubMedCrossRefGoogle Scholar
  24. Vaury C, Bucheton A, Pelisson A (1989) The beta heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98:215–224PubMedCrossRefGoogle Scholar
  25. Zhang P, Spradling AC (1995) The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics 139:659–670PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1998

Authors and Affiliations

  • Fabienne Chalvet
    • 1
  • Carmen di Franco
    • 2
  • Alessandro Terrinoni
    • 3
  • Alain Pelisson
    • 1
  • Nikolaj Junakovic
    • 3
  • Alain Bucheton
    • 1
  1. 1.Centre de Génétique MoléculaireCNRSGif-sur-Yvette CedexFrance
  2. 2.Dipartimento di Genetica e Biologia MolecolareUniversité “La Sapienza”RomaItaly
  3. 3.Centro Acidi Nucleici C.N.R. c/o Dipartamento di Genetica e Biologia MolecolareUniversitå “La Sapienza,”RomaItaly

Personalised recommendations