Journal of Molecular Evolution

, Volume 45, Issue 2, pp 154–160 | Cite as

Sequence diversity and molecular evolution of the merozoite surface antigen 2 of plasmodium falciparum

  • Ingrid Felger
  • Vikki M. Marshal
  • John C. Reeder
  • John A. Hunt
  • Charles S. Mgone
  • Hans-Peter Beck


Eleven new alleles of the Plasmodium falciparum merozoite surface antigen 2 (MSA2) from Papua New Guinea were analyzed by direct sequencing of polymerase chain reaction (PCR) products. We have used the sequence information to trace the molecular evolution of MSA2. The repeats of ten alleles belonging to the 3D7 allelic family differed considerably in size, nucleotide sequence, and repeat copy number. In the repeat region of these new alleles, codon usage was extremely biased with an exclusive use of NNT codons. Another new allele sequenced belonged to the FC27 family and confirmed the family-specific conserved structure of 96 and 36 bp repeats. In order to assess sequence microheterogeneity within samples defined as the same genotype by restriction fragment length polymorphism (RFLP), we have analyzed single-strand conformation polymorphism (SSCP) of different samples of the most frequent allele (D10 of the FC27 family) in the study population. No sequence heterogeneity could be detected within the repeat region. Based on analysis of the repeat regions in both allelic families, we discuss the hypothesis of a different evolutionary strategy being represented by each of the allelic families.

Kew words

Merozoite surface antigen 2 Nucleotide sequence comparisons Molecular evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Yaman F, Genton B, Anders RF, Falk M, Triglia T, Lewis D, Hii J, Beck H-P, Alpers M (1994) Relationship between humoral response to merozoite surface antigen 2 and malaria morbidity in a highly endemic area of Papua New Guinea. Am J Trop Med Hyg 51:593–602PubMedGoogle Scholar
  2. Alpers MP, AI-Yaman F, Beck H-P, Bhatia KK, Hii J, Lewis DJ, Paru R, Smith T (1992) The Malaria Vaccine Epidemiology and Evaluation Project of Papua New Guinea: rationale and baseline studies. PNG Med J 35:285–297Google Scholar
  3. Arnot DE, Barnwell JW, Stewart MJ (1988) Does biased gene conversion influence polymorphism in the circumsporozoite protein-encoding gene of Plasmodium vivax? Proc Natl Acad Sci USA 85:8102–8106PubMedCrossRefGoogle Scholar
  4. Arnot D (1989) Malaria and major histocompatibility complex. Parasitol Today 5:138–143PubMedCrossRefGoogle Scholar
  5. Conway DJ (1997) Natural selection on polymorphic malaria antigens and the search for a vaccine. Parasitol Today 13:26–29PubMedCrossRefGoogle Scholar
  6. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117PubMedCrossRefGoogle Scholar
  7. Epping RJ, Goldstone SD, Ingram LT, Upcroft JA, Ramasamy R, Cooper JA, Bushell GR, Geysen HM (1988) An epitope recognised by inhibitory monoclonal antibodies that react with a 51 kilodalton merozoite surface antigen in Plasmodium falciparum. Mol Biochem Parasitol 28:1–10PubMedCrossRefGoogle Scholar
  8. Feiger I, Tavul L, Beck HP (1993) Plasmodium falciparum: a rapid technique for genotyping the merozoite surface protein 2. Exp Parasitol 77:372–375CrossRefGoogle Scholar
  9. Feiger I, Tavul L, Kabintik S, Marshall V, Genton B, Alpers M, Beck HP (1994) Plasmodium falciparum: extensive polymorphism in merozoite surface antigen 2 alleles in an area with endemic malaria in Papua New Guinea. Exp Parasitol 79:106–116CrossRefGoogle Scholar
  10. Foley M, Ranford-Cartwright LC, Babiker HA (1992) Rapid and simple method for isolating malaria DNA from fingerprick samples of blood. Mol Biochem Parasitol 53:241–244PubMedCrossRefGoogle Scholar
  11. Frontali C, Pizzi E (1991) Conservation and divergence of repeated structures in Plasmodium genomes: the molecular drift. Acta Leid 60(l):69–81Google Scholar
  12. Frontali C (1994) Genome plasticity in Plasmodium. Genetica 94:91–100PubMedCrossRefGoogle Scholar
  13. Good MF, Pombo D, Quakyi IA, Riley EM, Houghten RA, Menon A, Ailing DW, Berzofsky JA, Miller LH (1988) Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum:immunodominant T-cell domains map to the polymorphic regions of the molecule. Proc Natl Acad Sci USA 85:1199–1203PubMedCrossRefGoogle Scholar
  14. Huang X (1994) On global sequence alignment. Computer Applications Biosci 10(3):227–235Google Scholar
  15. Hughes AL (1991) Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics 127:345–353.PubMedGoogle Scholar
  16. Hughes AL (1992) Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol Biol Evol 9:381–393PubMedGoogle Scholar
  17. Hughes MK, Hughes AL (1995) Natural selection on Plasmodium surface proteins. Mol Biochem Paras 71:99–113CrossRefGoogle Scholar
  18. Li WH (1993) Unbiased estimation of the rate of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99PubMedCrossRefGoogle Scholar
  19. Marshall VM, Anthony RL, Bangs MJ, Purnomo, Anders RF, Coppel RL (1994) Allelic variants of the Plasmodium falciparum merozoite surface antigen 2 (MSA-2) in a geographically restricted area of Irian Jaya. Mol Biochem Parasiol 63(1): 13–21CrossRefGoogle Scholar
  20. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770PubMedCrossRefGoogle Scholar
  21. Pizzi E, Liuni S, Frontali C (1990) Detection of latent sequence periodicities. Nucl Acid Res 18(3): 3745–3752CrossRefGoogle Scholar
  22. Prescott N, Stowers AW, Cheng Q, Bobogare A, Rzepczyk CM, Saul A (1994) Plasmodium falciparum genetic diversity can be characterised using the polymorphic merozoite surface antigen 2 (MSA-2) gene as a single locus marker. Mol Biochem Paras 63:203–212CrossRefGoogle Scholar
  23. Rzepczyk CM, Csurhes PA, Lord R, Matile H (1990) Synthetic peptide immunogens eliciting antibodies to Plasmodium falciparum sporozoite and merozoite surface antigens in H 2b and H 2k mice. J Immunol 145:2691–2696PubMedGoogle Scholar
  24. Rzepczyk CR, Csurhes PA, Saul AJ, Jones GL, Dyer S, Chee D, Goss N, Irving DO (1992) Comparative study of the T cell response to two allelic forms of a malarial vaccine candidate protein. J Immunol 148:1197–1204PubMedGoogle Scholar
  25. Saul A, Battistutta D (1988) Codon usage in Plasmodium falciparum. Mol Biochem Parasitai 27:35–42CrossRefGoogle Scholar
  26. Smythe JA, Coppel RL, Brown GV, Ramasamy R, Kemp DJ, Anders RF (1988) Identification of two integral membrane proteins of Plasmodium falciparum. Proc Natl Acad Sci USA 85:5195–5199PubMedCrossRefGoogle Scholar
  27. Smythe JA, Peterson MG, Coppel RL, Saul AJ, Kemp DJ, Anders RF (1990) Structural diversity in the 45 kilodalton merozoite surface antigen of Plasmodium falciparum. Mol Biochem Parasitol 39(2): 227–234PubMedCrossRefGoogle Scholar
  28. Smythe JA, Coppel RL, Day KP, Martin RK, Oduola AMJ, Kemp DJ, Anders RF (1991) Structural diversity in the Plasmodium falciparum merozoite surface antigen 2. Proc Natl Acad Sci USA 88: 1751–1755PubMedCrossRefGoogle Scholar
  29. Snewin VA, Herrera M, Sanchez G, Scherf A, Langsley G, Herrera S (1991) Polymorphism of the alleles of the merozoite surface antigens MSA1 and MSA2 in Plasmodium falciparum wild isolates from Colombia. Mol Biochem Parasitol 49:265–276PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1997

Authors and Affiliations

  • Ingrid Felger
    • 1
    • 5
  • Vikki M. Marshal
    • 2
  • John C. Reeder
    • 2
  • John A. Hunt
    • 3
  • Charles S. Mgone
    • 4
  • Hans-Peter Beck
    • 5
  1. 1.Institut für ZellbiologieUniversität Witten-HerdeckeWittenGermany
  2. 2.The Walter and Eliza Hall Institute of Medical ResearchP.O. Royal Melbourne HospitalMelbourne, VictoriaAustralia
  3. 3.Department of GeneticsUniversity of HawaiiHonoluluUSA
  4. 4.PNG Institute of Medical ResearchGorokaPapua New Guinea
  5. 5.Swiss Tropical InstituteBaselSwitzerland

Personalised recommendations