Skip to main content
Log in

Cannabinoid CB1 receptor-mediated inhibition of NMDA- and kainate-stimulated noradrenaline and dopamine release in the brain

  • Original article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Guinea-pig hippocampal slices preincubated with [3H]noradrenaline were superfused with medium containing desipramine and rauwolscine and rat striatal slices preincubated with [3H]dopamine were superfused with medium containing nomifensine; the effect of cannabinoid receptor ligands on tritium overflow stimulated by NMDA or kainate was examined. Furthermore, the affinity of the drugs for cannabinoid CB1 receptors was determined in rat brain cortex membranes using [3H]SR 141716.

In guinea-pig hippocampal slices preincubated with [3H]noradrenaline, tritium overflow stimulated by NMDA 100 μM and 1000 μM and by kainate 1000 μM was inhibited by the cannabinoid receptor agonists CP-55,940 and/or WIN 55,212-2. The CB1 receptor antagonist SR 141716 increased the NMDA (1000 μM)-stimulated tritium overflow but did not affect tritium overflow stimulated by NMDA 100 μM or kainate 1000 μM. The inhibitory effect of WIN 55,212-2 on the NMDA (100 μM)- and kainate (1000 μM)-evoked tritium overflow was antagonized by SR 141716. In rat striatal slices preincubated with [3H]dopamine, WIN 55,212-2 inhibited the NMDA (1000 μM)-stimulated tritium overflow. SR 141716, which, by itself, did not affect tritium overflow, counteracted the inhibitory effect of WIN 55,212-2. [ 3 H]SR 141716 binding to rat cortical membranes was inhibited by SR 141716, CP-55,940 and WIN 55,212-2 (pK i 8.53, 7.34 and 5.93, respectively) but not affected by desipramine, rauwolscine and nomifensine (pK i < 5).

In conclusion, activation of CB1 receptors inhibits the NMDA- and kainate-stimulated noradrenaline release in guinea-pig hippocampus and the NMDA-stimulated dopamine release in rat striatum. The explanation for the facilitatory effect of SR 141716 might be that it acts as an inverse agonist at CB1 receptors or that these receptors are activated by endogenous cannabinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 25 February 1999 / Accepted: 12 April 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathmann, M., Bauer, U., Schlicker, E. et al. Cannabinoid CB1 receptor-mediated inhibition of NMDA- and kainate-stimulated noradrenaline and dopamine release in the brain. Naunyn-Schmiedeberg's Arch Pharmacol 359, 466–470 (1999). https://doi.org/10.1007/PL00005377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00005377

Navigation