Advertisement

pure and applied geophysics

, Volume 157, Issue 11–12, pp 2125–2147 | Cite as

3-D Physical Modelling of Stress Accumulation Processes at Transcurrent Plate Boundaries

  • C. Hashimoto
  • M. Matsu’ura

Abstract

—We constructed a 3-D physical model of tectonic loading at transcurrent plate boundaries by considering viscoelastic stress relaxation in the asthenosphere and spatial variation in frictional properties (peak strength and critical weakening displacement) of faults. With this model we simulated the process of stress accumulation and release at a seismogenic region with relatively high strength on the plate interface. In low strength regions surrounding the seismogenic region, quasi-static fault slip gradually proceeds with the progress of relative plate motion. The increase of slip deficits in the seismogenic region brings about stress concentration at its margin. The stress accumulation rate is roughly proportional to the inverse of the effective fault length. The accumulated stress is released by unstable dynamic rupture if the critical weakening displacement D c is small, and by stable fault slip if D c is very large. When a fault system consists of two adjacent seismogenic regions, sudden stress release in one region accelerates the stress accumulation process in another region through transient viscoelastic stress transfer as well as instantaneous elastic stress transfer. This indicates the importance of elastic and viscoelastic interaction between adjacent seismic faults even in stress accumulation processes.

Key Words: Tectonic loading, viscoelastic stress relaxation, fault constitutive law, slip deficit. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhauser Verlag Basel, 2000

Authors and Affiliations

  • C. Hashimoto
    • 1
  • M. Matsu’ura
    • 2
  1. 1.Department of Earth and Planetary Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: hashi@solid.eps.s.u-tokyo.ac.jpJP
  2. 2.Department of Earth and Planetary Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: matsuura@eps.s.u-tokyo.ac.jpJP

Personalised recommendations