Advertisement

Archiv der Mathematik

, Volume 77, Issue 2, pp 155–162 | Cite as

Base field extensions and generic modules over finite dimensional algebras

  • S. Kasjan

Abstract.

Let R be a finite dimensional algebra over a field k. It is shown that a finite separable field extension of k preserves and respects generic tameness of R. Moreover if k is an infinite perfect field then the extension of k to its algebraic closure preserves generic tameness. As a corollary we get that if R is generically tame then for every number m all but a finite number of indecomposable R-modules of length m are DTr-periodic.

Keywords

Finite Number Generic Module Field Extension Algebraic Closure Base Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2001

Authors and Affiliations

  • S. Kasjan
    • 1
  1. 1.Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, PolandPL

Personalised recommendations