Advertisement

Journal of Molecular Evolution

, Volume 44, Supplement 1, pp S38–S43 | Cite as

Evolutionary motif and its biological and structural significance

  • Y. Tateno
  • K. Ikeo
  • T. Imanishi
  • H. Watanabe
  • T. Endo
  • Y. Yamaguchi
  • Y. Suzuki
  • K. Takahashi
  • K. Tsunoyama
  • M. Kawai
  • Y. Kawanishi
  • K. Naitou
  • T. Gojobori
Ancient Molecular Evolution

Abstract

We developed a method for multiple alignment of protein sequences. The main feature of this method is that it takes the evolutionary relationships of the proteins in question into account repeatedly for execution, until the relationships and alignment results are in agreement. We then applied this method to the data of the international DNA sequence databases, which are the most comprehensive and updated DNA databases in the world, in order to estimate the “evolutionary motif” by extensive use of a supercomputer. Though a few problems needed to be solved, we could estimate the length of the motifs in the range of 20 to 200 amino acids, with about 60 the most frequent length. We then discussed their biological and structural significance. We believe that we are now in a position to analyze DNA and protein not only in vivo and in vitro but also in silico.

Key words

Evolutionary motif Motif length Multiple alignment Window analysis 

References

  1. Adams MD et al. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656PubMedCrossRefGoogle Scholar
  2. Berget SM, Berk AJ, Sharp PA (1978) Spliced segments at the 5′termini of adenovirus-2 late mRNA: a role for heterogeneous nuclear RNA in mammalian cells. Cold Spring Harb Symp Quant Biol 42:523–529PubMedGoogle Scholar
  3. Branden C, Tooz J (1991) Introduction to protein structure. Garland, New YorkGoogle Scholar
  4. Chambon P (1981) Split genes. Sci Am 244:66–71CrossRefGoogle Scholar
  5. Dayhoff MO, Schwartz RM, Orcutt BC (1978) In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. NBRF, Washington, DC, pp 345–352Google Scholar
  6. Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581–582CrossRefGoogle Scholar
  7. Dorit RL, Schoenbach L, Gilbert W (1990) How big is the universe of exons? Science 250:1377–1382PubMedCrossRefGoogle Scholar
  8. Fleischmann RD et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512PubMedCrossRefGoogle Scholar
  9. Fraser CM et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403PubMedCrossRefGoogle Scholar
  10. Gilbert W (1987) The exon theory of genes. Cold Spring Harb Symp Quant Biol 52:901–905PubMedGoogle Scholar
  11. Gö M (1981) Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291:90–92PubMedCrossRefGoogle Scholar
  12. Gō M, Nosaka M (1987) Protein architecture and the origin of introns. Cold Spring Harb Symp Quant Biol 52:915–924PubMedGoogle Scholar
  13. Green P, Lipman D, Hillier L, Waterston R, States D, Claverie JM (1993) Ancient conserved regions in new gene sequences and the protein databases. Science 259:1711–1716PubMedCrossRefGoogle Scholar
  14. Jantzen H-M, Admon A, Bell SP, Tjian R (1990) Nucleolar transcription factor UBF contains a DNA-binding motif with homology to HMG protein. Nature 344:830–836PubMedCrossRefGoogle Scholar
  15. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  16. Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441PubMedCrossRefGoogle Scholar
  17. Minor DL, Kim PS (1994) Measurement of the β-sheet properties of amino acids. Nature 367:660–663PubMedCrossRefGoogle Scholar
  18. Miyata T, Miyazawa S, Yasunaga T (1979) Two types of amino acid substitutions in protein evolution. J Mol Evol 12:219–236PubMedCrossRefGoogle Scholar
  19. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequences of two proteins. J Mol Biol 48:443–453PubMedCrossRefGoogle Scholar
  20. Neer EJ, Schmidt CJ, Namburdripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300PubMedCrossRefGoogle Scholar
  21. Nei M (1975) Molecular population genetics and evolution. North-Holland, AmsterdamGoogle Scholar
  22. Orengo CA, Jones DT, Thornton JM (1994) Protein superfamilies and domain superfolds. Nature 372:631–634PubMedCrossRefGoogle Scholar
  23. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448PubMedCrossRefGoogle Scholar
  24. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  25. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  26. Wolfenden RV, Cullis PM, Soughgate PM (1979) Water, protein folding, and the genetic code. Science 206:575–577PubMedCrossRefGoogle Scholar
  27. Xu W, Rould MA, Jun S, Desplan C, Pabo CO (1995) Crystal structure of a paired domain-DNA complex at 2.5 Å resolution reveals structural bases for pax developmental mutations. Cell 80:639–650PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Y. Tateno
    • 1
  • K. Ikeo
    • 1
  • T. Imanishi
    • 1
  • H. Watanabe
    • 1
  • T. Endo
    • 1
  • Y. Yamaguchi
    • 1
  • Y. Suzuki
    • 1
  • K. Takahashi
    • 1
  • K. Tsunoyama
    • 1
  • M. Kawai
    • 2
  • Y. Kawanishi
    • 2
  • K. Naitou
    • 2
  • T. Gojobori
    • 1
  1. 1.Center for Information BiologyNational Institute of GeneticsMishimaYataJapan
  2. 2.Fujitsu LimitedMakuhari System LaboratoryChibaJapan

Personalised recommendations