Cosmic ray boosted sub-GeV gravitationally interacting dark matter in direct detection

An Erratum to this article is available

This article has been updated

Abstract

Detections of non-gravitational interactions of massive dark matter (DM) with visible sector so far have given null results. The DM may communicate with the ordinary matter only through gravitational interaction. Besides, the majority of traditional direct detections have poor sensitivities for light DM because of the small recoil energy. Thanks to the high energy cosmic rays (CRs), the light DM can be boosted by scattering with CRs and thus may be detected in the ongoing experiments. In this work, we derive the exclusion limits on the cosmic ray boosted sub-GeV DM with gravitational mediator from the Xenon1T data. It turns out that a sizable region of such a cosmic ray boosted DM can be excluded by the current data.

A preprint version of the article is available at ArXiv.

Change history

References

  1. [1]

    B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

  3. [3]

    O. Buchmueller, C. Doglioni and L.T. Wang, Search for dark matter at colliders, Nature Phys. 13 (2017) 217 [arXiv:1912.12739] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    G. Bertone and M.P. Tait, Tim, A new era in the search for dark matter, Nature 562 (2018) 51 [arXiv:1810.01668] [INSPIRE].

  5. [5]

    S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

  8. [8]

    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  9. [9]

    LUX collaboration, Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 251302 [arXiv:1705.03380] [INSPIRE].

  10. [10]

    PandaX-II collaboration, Constraining Dark Matter Models with a Light Mediator at the PandaX-II Experiment, Phys. Rev. Lett. 121 (2018) 021304 [arXiv:1802.06912] [INSPIRE].

  11. [11]

    CDEX collaboration, Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jinping Underground Laboratory, Phys. Rev. Lett. 123 (2019) 161301 [arXiv:1905.00354] [INSPIRE].

  12. [12]

    SuperCDMS collaboration, Results from the Super Cryogenic Dark Matter Search Experiment at Soudan, Phys. Rev. Lett. 120 (2018) 061802 [arXiv:1708.08869] [INSPIRE].

  13. [13]

    CRESST collaboration, Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground, Eur. Phys. J. C 77 (2017) 637 [arXiv:1707.06749] [INSPIRE].

  14. [14]

    DAMIC collaboration, Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB, Phys. Rev. D 94 (2016) 082006 [arXiv:1607.07410] [INSPIRE].

  15. [15]

    SuperCDMS collaboration, First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector, Phys. Rev. Lett. 121 (2018) 051301 [Erratum ibid. 122 (2019) 069901] [arXiv:1804.10697] [INSPIRE].

  16. [16]

    SENSEI collaboration, SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run, Phys. Rev. Lett. 121 (2018) 061803 [arXiv:1804.00088] [INSPIRE].

  17. [17]

    M. Ibe, W. Nakano, Y. Shoji and K. Suzuki, Migdal Effect in Dark Matter Direct Detection Experiments, JHEP 03 (2018) 194 [arXiv:1707.07258] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M.J. Dolan, F. Kahlhoefer and C. McCabe, Directly detecting sub-GeV dark matter with electrons from nuclear scattering, Phys. Rev. Lett. 121 (2018) 101801 [arXiv:1711.09906] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    N.F. Bell, J.B. Dent, J.L. Newstead, S. Sabharwal and T.J. Weiler, Migdal effect and photon bremsstrahlung in effective field theories of dark matter direct detection and coherent elastic neutrino-nucleus scattering, Phys. Rev. D 101 (2020) 015012 [arXiv:1905.00046] [INSPIRE].

  20. [20]

    Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].

  21. [21]

    K. Schutz and K.M. Zurek, Detectability of Light Dark Matter with Superfluid Helium, Phys. Rev. Lett. 117 (2016) 121302 [arXiv:1604.08206] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    C.V. Cappiello, K.C.Y. Ng and J.F. Beacom, Reverse Direct Detection: Cosmic Ray Scattering With Light Dark Matter, Phys. Rev. D 99 (2019) 063004 [arXiv:1810.07705] [INSPIRE].

  23. [23]

    T. Bringmann and M. Pospelov, Novel direct detection constraints on light dark matter, Phys. Rev. Lett. 122 (2019) 171801 [arXiv:1810.10543] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    J.F. Cherry, M.T. Frandsen and I.M. Shoemaker, Direct Detection Phenomenology in Models Where the Products of Dark Matter Annihilation Interact with Nuclei, Phys. Rev. Lett. 114 (2015) 231303 [arXiv:1501.03166] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    Y. Ema, F. Sala and R. Sato, Light Dark Matter at Neutrino Experiments, Phys. Rev. Lett. 122 (2019) 181802 [arXiv:1811.00520] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    J. Alvey, M. Campos, M. Fairbairn and T. You, Detecting Light Dark Matter via Inelastic Cosmic Ray Collisions, Phys. Rev. Lett. 123 (2019) 261802 [arXiv:1905.05776] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    C. Cappiello and J.F. Beacom, Strong New Limits on Light Dark Matter from Neutrino Experiments, Phys. Rev. D 100 (2019) 103011 [arXiv:1906.11283] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    J.B. Dent, B. Dutta, J.L. Newstead and I.M. Shoemaker, Bounds on Cosmic Ray-Boosted Dark Matter in Simplified Models and its Corresponding Neutrino-Floor, Phys. Rev. D 101 (2020) 116007 [arXiv:1907.03782] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    K. Bondarenko, A. Boyarsky, T. Bringmann, M. Hufnagel, K. Schmidt-Hoberg and A. Sokolenko, Direct detection and complementary constraints for sub-GeV dark matter, JHEP 03 (2020) 118 [arXiv:1909.08632] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    G. Krnjaic and S.D. McDermott, Implications of BBN Bounds for Cosmic Ray Upscattered Dark Matter, Phys. Rev. D 101 (2020) 123022 [arXiv:1908.00007] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    H.M. Lee, M. Park and V. Sanz, Gravity-mediated (or Composite) Dark Matter, Eur. Phys. J. C 74 (2014) 2715 [arXiv:1306.4107] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    H.M. Lee, M. Park and V. Sanz, Gravity-mediated (or Composite) Dark Matter Confronts Astrophysical Data, JHEP 05 (2014) 063 [arXiv:1401.5301] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    A. Carrillo-Monteverde, Y.-J. Kang, H.M. Lee, M. Park and V. Sanz, Dark Matter Direct Detection from new interactions in models with spin-two mediators, JHEP 06 (2018) 037 [arXiv:1803.02144] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    P. Brax, S. Fichet and P. Tanedo, The Warped Dark Sector, Phys. Lett. B 798 (2019) 135012 [arXiv:1906.02199] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  35. [35]

    S. Della Torre et al., From Observations near the Earth to the Local Interstellar Spectra, in 25th European Cosmic Ray Symposium, 12, 2016 [arXiv:1701.02363] [INSPIRE].

  36. [36]

    M.J. Boschini et al., Solution of heliospheric propagation: unveiling the local interstellar spectra of cosmic ray species, Astrophys. J. 840 (2017) 115 [arXiv:1704.06337] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    G.D. Starkman, A. Gould, R. Esmailzadeh and S. Dimopoulos, Opening the Window on Strongly Interacting Dark Matter, Phys. Rev. D 41 (1990) 3594 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    G.D. Mack, J.F. Beacom and G. Bertone, Towards Closing the Window on Strongly Interacting Dark Matter: Far-Reaching Constraints from Earth’s Heat Flow, Phys. Rev. D 76 (2007) 043523 [arXiv:0705.4298] [INSPIRE].

  39. [39]

    D. Hooper and S.D. McDermott, Robust Constraints and Novel Gamma-Ray Signatures of Dark Matter That Interacts Strongly With Nucleons, Phys. Rev. D 97 (2018) 115006 [arXiv:1802.03025] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    T. Emken and C. Kouvaris, How blind are underground and surface detectors to strongly interacting Dark Matter?, Phys. Rev. D 97 (2018) 115047 [arXiv:1802.04764] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    T. Bringmann, J. Edsjö, P. Gondolo, P. Ullio and L. Bergström, DarkSUSY 6: An Advanced Tool to Compute Dark Matter Properties Numerically, JCAP 07 (2018) 033 [arXiv:1802.03399] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    Z. Abidin and C.E. Carlson, Nucleon electromagnetic and gravitational form factors from holography, Phys. Rev. D 79 (2009) 115003 [arXiv:0903.4818] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    C.F. Perdrisat, V. Punjabi and M. Vanderhaeghen, Nucleon Electromagnetic Form Factors, Prog. Part. Nucl. Phys. 59 (2007) 694 [hep-ph/0612014] [INSPIRE].

  44. [44]

    I. Angeli, A consistent set of nuclear rms charge radii: properties of the radius surface R(N,Z), Atom. Data Nucl. Data Tabl. 87 (2004) 185.

  45. [45]

    W.L. Xu, C. Dvorkin and A. Chael, Probing sub-GeV Dark Matter-Baryon Scattering with Cosmological Observables, Phys. Rev. D 97 (2018) 103530 [arXiv:1802.06788] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    A. Bhoonah, J. Bramante, F. Elahi and S. Schon, Calorimetric Dark Matter Detection With Galactic Center Gas Clouds, Phys. Rev. Lett. 121 (2018) 131101 [arXiv:1806.06857] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M.S. Mahdawi and G.R. Farrar, Constraints on Dark Matter with a moderately large and velocity-dependent DM-nucleon cross-section, JCAP 10 (2018) 007 [arXiv:1804.03073] [INSPIRE].

  48. [48]

    CRESST collaboration, First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100 (2019) 102002 [arXiv:1904.00498] [INSPIRE].

  49. [49]

    J.F. Navarro, C.S. Frenk and S.D.M. White, The Structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].

  50. [50]

    Fermi-LAT collaboration, Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].

  51. [51]

    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    E949 collaboration, New measurement of the K+\( {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1912.09904

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wu, L., Yang, J.M. et al. Cosmic ray boosted sub-GeV gravitationally interacting dark matter in direct detection. J. High Energ. Phys. 2020, 72 (2020). https://doi.org/10.1007/JHEP12(2020)072

Download citation

Keywords

  • Phenomenology of Large extra dimensions