Dimension-six matrix elements for meson mixing and lifetimes from sum rules

Abstract

The hadronic matrix elements of dimension-six ∆F = 0, 2 operators are crucial inputs for the theory predictions of mixing observables and lifetime ratios in the B and D system. We determine them using HQET sum rules for three-point correlators. The results of the required three-loop computation of the correlators and the one-loop computation of the QCD-HQET matching are given in analytic form. For mixing matrix elements we find very good agreement with recent lattice results and comparable theoretical uncertainties. For lifetime matrix elements we present the first ever determination in the D meson sector and the first determination of ∆B = 0 matrix elements with uncertainties under control — superseeding preliminary lattice studies stemming from 2001 and earlier. With our state-of-the-art determination of the bag parameters we predict: τ(B+)/τ(B 0 d ) = 1.082 + 0.022− 0.026 , τ(B 0 s )/τ(B 0 d ) = 0.9994 ± 0.0025, τ(D+)/τ(D0) = 2. 7 + 0.7− 0.8 and the mixing-observables in the B s and B d system, in good agreement with the most recent experimental averages.

A preprint version of the article is available at ArXiv.

Change history

  • 26 June 2020

    Eq. (5.15) in the original paper used a wrong numerical.

References

  1. [1]

    M. Artuso, G. Borissov and A. Lenz, CP violation in the B 0 s system, Rev. Mod. Phys. 88 (2016) 045002 [arXiv:1511.09466] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    H.M. Asatrian, A. Hovhannisyan, U. Nierste and A. Yeghiazaryan, Towards next-to-next-to-leading-log accuracy for the width difference in the \( {B}_s-{\overline{B}}_s \) system: fermionic contributions to order (m c /m b )0 and (m c /m b )1, JHEP 10 (2017) 191 [arXiv:1709.02160] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    E. Dalgic et al., \( {B}_s^0-{\overline{B}}_s^0 \) mixing parameters from unquenched lattice QCD, Phys. Rev. D 76 (2007) 011501 [hep-lat/0610104] [INSPIRE].

  4. [4]

    ETM collaboration, N. Carrasco et al., B-physics from N f = 2 tmQCD: the Standard Model and beyond, JHEP 03 (2014) 016 [arXiv:1308.1851] [INSPIRE].

  5. [5]

    Fermilab Lattice and MILC collaborations, A. Bazavov et al., B 0(s) -mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D 93 (2016) 113016 [arXiv:1602.03560] [INSPIRE].

  6. [6]

    T. Jubb, M. Kirk, A. Lenz and G. Tetlalmatzi-Xolocotzi, On the ultimate precision of meson mixing observables, Nucl. Phys. B 915 (2017) 431 [arXiv:1603.07770] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. [7]

    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics. Theoretical Foundations, Nucl. Phys. B 147 (1979) 385 [INSPIRE].

  8. [8]

    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics: Applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    K.G. Chetyrkin, A.L. Kataev, A.B. Krasulin and A.A. Pivovarov, Calculation of the \( {K}^0-{\overline{K}}^0 \) mixing parameter via the QCD sum rules at finite energies, Phys. Lett. B 174 (1986) 104 [hep-ph/0103230] [INSPIRE].

  10. [10]

    J.G. Körner, A.I. Onishchenko, A.A. Petrov and A.A. Pivovarov, \( {B}^0-{\overline{B}}^0 \) mixing beyond factorization, Phys. Rev. Lett. 91 (2003) 192002 [hep-ph/0306032] [INSPIRE].

  11. [11]

    A.G. Grozin, R. Klein, T. Mannel and A.A. Pivovarov, \( {B}^0-{\overline{B}}^0 \) mixing at next-to-leading order, Phys. Rev. D 94 (2016) 034024 [arXiv:1606.06054] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    T. Mannel, B.D. Pecjak and A.A. Pivovarov, Analyzing \( {B}_s-{\overline{B}}_s \) mixing: Non-perturbative contributions to bag parameters from sum rules, [hep-ph/0703244].

  13. [13]

    T. Mannel, B.D. Pecjak and A.A. Pivovarov, Sum rule estimate of the subleading non-perturbative contributions to \( {B}_s-{\overline{B}}_s \) mixing, Eur. Phys. J. C 71 (2011) 1607 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    M.S. Baek, J. Lee, C. Liu and H.S. Song, Four quark operators relevant to B meson lifetimes from QCD sum rules, Phys. Rev. D 57 (1998) 4091 [hep-ph/9709386] [INSPIRE].

  15. [15]

    H.-Y. Cheng and K.-C. Yang, Nonspectator effects and B meson lifetimes from a field theoretic calculation, Phys. Rev. D 59 (1999) 014011 [hep-ph/9805222] [INSPIRE].

  16. [16]

    A. Lenz, Lifetimes and heavy quark expansion, Int. J. Mod. Phys. A 30 (2015) 1543005 [arXiv:1405.3601] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    V.A. Khoze and M.A. Shifman, Heavy Quarks, Sov. Phys. Usp. 26 (1983) 387 [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M.A. Shifman and M.B. Voloshin, Preasymptotic Effects in Inclusive Weak Decays of Charmed Particles, Sov. J. Nucl. Phys. 41 (1985) 120 [Yad. Fiz. 41 (1985) 187] [INSPIRE].

  19. [19]

    I.I.Y. Bigi and N.G. Uraltsev, Gluonic enhancements in non-spectator beauty decays: An inclusive mirage though an exclusive possibility, Phys. Lett. B 280 (1992) 271 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    I.I.Y. Bigi, N.G. Uraltsev and A.I. Vainshtein, Nonperturbative corrections to inclusive beauty and charm decays: QCD versus phenomenological models, Phys. Lett. B 293 (1992) 430 [Erratum ibid. B 297 (1992) 477] [hep-ph/9207214] [INSPIRE].

  21. [21]

    F. Krinner, A. Lenz and T. Rauh, The inclusive decay \( b\to c\overline{c}s \) revisited, Nucl. Phys. B 876 (2013) 31 [arXiv:1305.5390] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. [22]

    UKQCD collaboration, M. Di Pierro and C.T. Sachrajda, A Lattice study of spectator effects in inclusive decays of B mesons, Nucl. Phys. B 534 (1998) 373 [hep-lat/9805028] [INSPIRE].

  23. [23]

    D. Becirevic, Theoretical progress in describing the B meson lifetimes, PoS(HEP2001)098 [hep-ph/0110124] [INSPIRE].

  24. [24]

    M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How Large Can the SM Contribution to CP-violation in \( {D}^0\hbox{--} {\overline{D}}^0 \) Mixing Be?, JHEP 03 (2010) 009 [arXiv:1002.4794] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. [25]

    I.I.Y. Bigi and N.G. Uraltsev, \( {D}^0\hbox{--} {\overline{D}}^0 \) oscillations as a probe of quark hadron duality, Nucl. Phys. B 592 (2001) 92 [hep-ph/0005089] [INSPIRE].

  26. [26]

    H. Georgi, \( D-\overline{D} \) mixing in heavy quark effective field theory, Phys. Lett. B 297 (1992) 353 [hep-ph/9209291] [INSPIRE].

  27. [27]

    T. Ohl, G. Ricciardi and E.H. Simmons, \( D-\overline{D} \) mixing in heavy quark effective field theory: The sequel, Nucl. Phys. B 403 (1993) 605 [hep-ph/9301212] [INSPIRE].

  28. [28]

    M. Bobrowski, A. Lenz and T. Rauh, Short distance D-Dbar mixing, arXiv:1208.6438 [INSPIRE].

  29. [29]

    A. Lenz and T. Rauh, D-meson lifetimes within the heavy quark expansion, Phys. Rev. D 88 (2013) 034004 [arXiv:1305.3588] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    N. Carrasco et al., \( {D}^0-{\overline{D}}^0 \) mixing in the standard model and beyond from N f = 2 twisted mass QCD, Phys. Rev. D 90 (2014) 014502 [arXiv:1403.7302] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    ETM collaboration, N. Carrasco et al., ∆S = 2 andC = 2 bag parameters in the standard model and beyond from N f = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 92 (2015) 034516 [arXiv:1505.06639] [INSPIRE].

  32. [32]

    A. Bazavov et al., Short-distance matrix elements for D 0 -meson mixing for N f = 2 + 1 lattice QCD, arXiv:1706.04622 [INSPIRE].

  33. [33]

    J.M. Flynn, O.F. Hernandez and B.R. Hill, Renormalization of four fermion operators determining \( B\overline{B} \) mixing on the lattice, Phys. Rev. D 43 (1991) 3709 [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    G. Buchalla, Renormalization ofB = 2 transitions in the static limit beyond leading logarithms, Phys. Lett. B 395 (1997) 364 [hep-ph/9608232] [INSPIRE].

  35. [35]

    M. Ciuchini, E. Franco and V. Giménez, Next-to-leading order renormalization of theB = 2 operators in the static theory, Phys. Lett. B 388 (1996) 167 [hep-ph/9608204] [INSPIRE].

  36. [36]

    J.C. Collins, Renormalization: An Introduction to Renormalization, The Renormalization Group, and the Operator Product Expansion, Cambridge University Press, (1984).

  37. [37]

    A.J. Buras and P.H. Weisz, QCD Nonleading Corrections to Weak Decays in Dimensional Regularization and ’t Hooft-Veltman Schemes, Nucl. Phys. B 333 (1990) 66 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    S. Herrlich and U. Nierste, Evanescent operators, scheme dependences and double insertions, Nucl. Phys. B 455 (1995) 39 [hep-ph/9412375] [INSPIRE].

  39. [39]

    M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Next-to-leading order QCD corrections to the lifetime difference of B s mesons, Phys. Lett. B 459 (1999) 631 [hep-ph/9808385] [INSPIRE].

  40. [40]

    M. Beneke, G. Buchalla and I. Dunietz, Width Difference in the \( {B}_s-{\overline{B}}_s \) System, Phys. Rev. D 54 (1996) 4419 [Erratum ibid. D 83 (2011) 119902] [hep-ph/9605259] [INSPIRE].

  41. [41]

    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    M. Jamin and M.E. Lautenbacher, TRACER: Version 1.1: A Mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Commun. 74 (1993) 265 [INSPIRE].

  43. [43]

    H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    H.H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 218 (2017) 66 [arXiv:1612.00009] [INSPIRE].

  45. [45]

    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

  46. [46]

    A. Lenz and U. Nierste, Theoretical update of \( {B}_s-{\overline{B}}_s \) mixing, JHEP 06 (2007) 072 [hep-ph/0612167] [INSPIRE].

  47. [47]

    E. Eichten and B.R. Hill, An Effective Field Theory for the Calculation of Matrix Elements Involving Heavy Quarks, Phys. Lett. B 234 (1990) 511 [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  49. [49]

    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  50. [50]

    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  51. [51]

    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

  53. [53]

    A.G. Grozin and R.N. Lee, Three-loop HQET vertex diagrams for \( {B}^0\hbox{--} {\overline{B}}^0 \) mixing, JHEP 02 (2009) 047 [arXiv:0812.4522] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    P. Ball and V.M. Braun, Next-to-leading order corrections to meson masses in the heavy quark effective theory, Phys. Rev. D 49 (1994) 2472 [hep-ph/9307291] [INSPIRE].

  55. [55]

    D.J. Broadhurst and A.G. Grozin, Operator product expansion in static quark effective field theory: Large perturbative correction, Phys. Lett. B 274 (1992) 421 [hep-ph/9908363] [INSPIRE].

  56. [56]

    E. Bagan, P. Ball, V.M. Braun and H.G. Dosch, QCD sum rules in the effective heavy quark theory, Phys. Lett. B 278 (1992) 457 [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    M. Neubert, Heavy meson form-factors from QCD sum rules, Phys. Rev. D 45 (1992) 2451 [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].

  59. [59]

    F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, arXiv:1703.03751 [INSPIRE].

  60. [60]

    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  61. [61]

    M. Beneke, A. Maier, J. Piclum and T. Rauh, The bottom-quark mass from non-relativistic sum rules at NNNLO, Nucl. Phys. B 891 (2015) 42 [arXiv:1411.3132] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  62. [62]

    M. Beneke, A. Maier, J. Piclum and T. Rauh, NNNLO determination of the bottom-quark mass from non-relativistic sum rules, PoS(RADCOR2015)035 [arXiv:1601.02949] [INSPIRE].

  63. [63]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP 02 (2017) 090 [arXiv:1701.01404] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. [65]

    T. Luthe, A. Maier, P. Marquard and Y. Schröder, Complete renormalization of QCD at five loops, JHEP 03 (2017) 020 [arXiv:1701.07068] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  66. [66]

    T. Luthe, A. Maier, P. Marquard and Y. Schröder, The five-loop β-function for a general gauge group and anomalous dimensions beyond Feynman gauge, JHEP 10 (2017) 166 [arXiv:1709.07718] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. [67]

    K.G. Chetyrkin, G. Falcioni, F. Herzog and J.A.M. Vermaseren, Five-loop renormalisation of QCD in covariant gauges, JHEP 10 (2017) 179 [arXiv:1709.08541] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  68. [68]

    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, arXiv:1612.07233 [INSPIRE].

  70. [70]

    A.G. Grozin, T. Mannel and A.A. Pivovarov, Towards a Next-to-Next-to-Leading Order analysis of matching in \( {B}^0\hbox{--} {\overline{B}}^0 \) mixing, Phys. Rev. D 96 (2017) 074032 [arXiv:1706.05910] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    M. Beneke, A quark mass definition adequate for threshold problems, Phys. Lett. B 434 (1998) 115 [hep-ph/9804241] [INSPIRE].

  72. [72]

    A.H. Hoang, Z. Ligeti and A.V. Manohar, B decay and the Upsilon mass, Phys. Rev. Lett. 82 (1999) 277 [hep-ph/9809423] [INSPIRE].

  73. [73]

    I.I.Y. Bigi, M.A. Shifman, N. Uraltsev and A.I. Vainshtein, High power n of m b in beauty widths and N = 5 → ∞ limit, Phys. Rev. D 56 (1997) 4017 [hep-ph/9704245] [INSPIRE].

  74. [74]

    S. Laplace, Z. Ligeti, Y. Nir and G. Perez, Implications of the CP asymmetry in semileptonic B decay, Phys. Rev. D 65 (2002) 094040 [hep-ph/0202010] [INSPIRE].

  75. [75]

    M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, The B + − B 0 d lifetime difference beyond leading logarithms, Nucl. Phys. B 639 (2002) 389 [hep-ph/0202106] [INSPIRE].

  76. [76]

    M. Ciuchini, E. Franco, V. Lubicz and F. Mescia, Next-to-leading order QCD corrections to spectator effects in lifetimes of beauty hadrons, Nucl. Phys. B 625 (2002) 211 [hep-ph/0110375] [INSPIRE].

  77. [77]

    E. Franco, V. Lubicz, F. Mescia and C. Tarantino, Lifetime ratios of beauty hadrons at the next-to-leading order in QCD, Nucl. Phys. B 633 (2002) 212 [hep-ph/0203089] [INSPIRE].

  78. [78]

    F. Gabbiani, A.I. Onishchenko and A.A. Petrov, Spectator effects and lifetimes of heavy hadrons, Phys. Rev. D 70 (2004) 094031 [hep-ph/0407004] [INSPIRE].

  79. [79]

    Z.-G. Wang, Analysis of the masses and decay constants of the heavy-light mesons with QCD sum rules, Eur. Phys. J. C 75 (2015) 427 [arXiv:1506.01993] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    P. Gelhausen, A. Khodjamirian, A.A. Pivovarov and D. Rosenthal, Decay constants of heavy-light vector mesons from QCD sum rules, Phys. Rev. D 88 (2013) 014015 [Erratum ibid. D 89 (2014) 099901] [Erratum ibid. D 91 (2015) 099901] [arXiv:1305.5432] [INSPIRE].

  81. [81]

    S. Narison, A fresh look into m c,b and precise \( {f}_{D_{(s)},{B}_{(s)}} \) from heavy-light QCD spectral sum rules, Phys. Lett. B 718 (2013) 1321 [arXiv:1209.2023] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    W. Lucha, D. Melikhov and S. Simula, OPE, charm-quark mass and decay constants of D and D s mesons from QCD sum rules, Phys. Lett. B 701 (2011) 82 [arXiv:1101.5986] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    M. Beneke, Y. Kiyo, A. Maier and J. Piclum, Near-threshold production of heavy quarks with QQbar threshold, Comput. Phys. Commun. 209 (2016) 96 [arXiv:1605.03010] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    M. Beneke, A. Maier, T. Rauh and P. Ruiz-Femenia, Non-resonant and electroweak NNLO correction to the e + e top anti-top threshold, arXiv:1711.10429 [INSPIRE].

  85. [85]

    E. Gamiz, J. Shigemitsu and H. Trottier, Four Fermion Operator Matching with NRQCD Heavy and AsqTad Light Quarks, Phys. Rev. D 77 (2008) 114505 [arXiv:0804.1557] [INSPIRE].

    ADS  Google Scholar 

  86. [86]

    C. Monahan, E. Gamiz, R. Horgan and J. Shigemitsu, Matching lattice and continuum four-fermion operators with nonrelativistic QCD and highly improved staggered quarks, Phys. Rev. D 90 (2014) 054015 [arXiv:1407.4040] [INSPIRE].

    ADS  Google Scholar 

  87. [87]

    M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi and L. Silvestrini, Next-to-leading order QCD corrections toF = 2 effective Hamiltonians, Nucl. Phys. B 523 (1998) 501 [hep-ph/9711402] [INSPIRE].

  88. [88]

    A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B 586 (2000) 397 [hep-ph/0005183] [INSPIRE].

  89. [89]

    M. Neubert and C.T. Sachrajda, Spectator effects in inclusive decays of beauty hadrons, Nucl. Phys. B 483 (1997) 339 [hep-ph/9603202] [INSPIRE].

  90. [90]

    A. Alberti, P. Gambino, K.J. Healey and S. Nandi, Precision Determination of the Cabibbo-Kobayashi-Maskawa Element V cb , Phys. Rev. Lett. 114 (2015) 061802 [arXiv:1411.6560] [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    K.G. Chetyrkin et al., Charm and Bottom Quark Masses: An Update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Rauh.

Additional information

ArXiv ePrint: 1711.02100

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirk, M., Lenz, A. & Rauh, T. Dimension-six matrix elements for meson mixing and lifetimes from sum rules. J. High Energ. Phys. 2017, 68 (2017). https://doi.org/10.1007/JHEP12(2017)068

Download citation

Keywords

  • Effective Field Theories
  • Heavy Quark Physics
  • Nonperturbative Effects