Higgs ultraviolet softening

  • I. Brivio
  • O. J. P. Éboli
  • M. B. Gavela
  • M. C. Gonzalez-García
  • L. Merlo
  • S. Rigolin
Open Access
Regular Article - Theoretical Physics


We analyze the leading effective operators which induce a quartic momentum dependence in the Higgs propagator, for a linear and for a non-linear realization of electroweak symmetry breaking. Their specific study is relevant for the understanding of the ultraviolet sensitivity to new physics. Two methods of analysis are applied, trading the Lagrangian coupling by: i) a “ghost” scalar, after the Lee-Wick procedure; ii) other effective operators via the equations of motion. The two paths are shown to lead to the same effective Lagrangian at first order in the operator coefficients. It follows a modification of the Higgs potential and of the fermionic couplings in the linear realization, while in the non-linear one anomalous quartic gauge couplings, Higgs-gauge couplings and gauge-fermion interactions are induced in addition. Finally, all LHC Higgs and other data presently available are used to constrain the operator coefficients; the future impact of pp → 4 leptons data via off-shell Higgs exchange and of vector boson fusion data is considered as well. For completeness, a summary of pure-gauge and gauge-Higgs signals exclusive to non-linear dynamics at leading-order is included.


Higgs Physics Chiral Lagrangians Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T.D. Lee and G.C. Wick, Finite theory of quantum electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Grinstein, D. O’Connell and M.B. Wise, The Lee-Wick standard model, Phys. Rev. D 77 (2008) 025012 [arXiv:0704.1845] [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.R. Espinosa and B. Grinstein, Ultraviolet properties of the Higgs sector in the Lee-Wick standard model, Phys. Rev. D 83 (2011) 075019 [arXiv:1101.5538] [INSPIRE].ADSGoogle Scholar
  5. [5]
    R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B 12 (1969) 281 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Coleman, Acausality, in Erice 1969, Ettore Majorana school on subnuclear phenomena, A. Zichichi ed., Academic Press, New York U.S.A. (1970).Google Scholar
  7. [7]
    T.D. Lee and G.C. Wick, Questions of Lorentz invariance in field theories with indefinite metric, Phys. Rev. D 3 (1971) 1046 [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3 (1971) 811 [INSPIRE].ADSGoogle Scholar
  9. [9]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Bagger et al., The strongly interacting W W system: gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [INSPIRE].ADSGoogle Scholar
  13. [13]
    V. Koulovassilopoulos and R.S. Chivukula, The phenomenology of a nonstandard Higgs boson in W L W L scattering, Phys. Rev. D 50 (1994) 3218 [hep-ph/9312317] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C.P. Burgess, J. Matias and M. Pospelov, A Higgs or not a Higgs? What to do if you discover a new scalar particle, Int. J. Mod. Phys. A 17 (2002) 1841 [hep-ph/9912459] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  17. [17]
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The effective chiral lagrangian for a light dynamicalHiggs particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
  18. [18]
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, Flavor with a light dynamicalHiggs particle”, Phys. Rev. D 87 (2013) 055019 [arXiv:1212.3307] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Buchalla, O. Catà and C. Krause, Complete electroweak chiral lagrangian with a light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [arXiv:1307.5017] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E. Alvarez, L. Da Rold, C. Schat and A. Szynkman, Electroweak precision constraints on the Lee-Wick standard model, JHEP 04 (2008) 026 [arXiv:0802.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C.D. Carone, R. Ramos and M. Sher, LHC constraints on the Lee-Wick Higgs sector, Phys. Lett. B 732 (2014) 122 [arXiv:1403.0011] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  24. [24]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].ADSGoogle Scholar
  25. [25]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Efrati and Y. Nir, What if λ hhh ≠ 3m h2/v, arXiv:1401.0935 [INSPIRE].
  27. [27]
    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-García, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T.G. Rizzo, Searching for Lee-Wick gauge bosons at the LHC, JHEP 06 (2007) 070 [arXiv:0704.3458] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T.G. Rizzo, Unique identification of Lee-Wick gauge bosons at linear colliders, JHEP 01 (2008) 042 [arXiv:0712.1791] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T.R. Dulaney and M.B. Wise, Flavor changing neutral currents in the Lee-Wick standard model, Phys. Lett. B 658 (2008) 230 [arXiv:0708.0567] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Alvarez, C. Schat, L. Da Rold and A. Szynkman, Electroweak precision constraints on the Lee-Wick standard model, arXiv:0810.3463 [INSPIRE].
  34. [34]
    T.E.J. Underwood and R. Zwicky, Electroweak precision data and the Lee-Wick standard model, Phys. Rev. D 79 (2009) 035016 [arXiv:0805.3296] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C.D. Carone and R.F. Lebed, Minimal Lee-Wick extension of the standard model, Phys. Lett. B 668 (2008) 221 [arXiv:0806.4555] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C.D. Carone and R. Primulando, Constraints on the Lee-Wick Higgs sector, Phys. Rev. D 80 (2009) 055020 [arXiv:0908.0342] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond geolocating: constraining higher dimensional operators in H → 4ℓ with off-shell production and more, arXiv:1403.4951 [INSPIRE].
  38. [38]
    C. Englert and M. Spannowsky, Limitations and opportunities of off-shell coupling measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Brunstein, O.J.P. Éboli and M.C. Gonzalez-García, Constraints on quartic vector boson interactions from Z physics, Phys. Lett. B 375 (1996) 233 [hep-ph/9602264] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    O.J.P. Éboli, M.C. Gonzalez-García and J.K. Mizukoshi, ppjje ± μ ± νν and jje ± μ ± νν at O(α em6) and O(α em4 α s2) for the study of the quartic electroweak gauge boson vertex at CERN LHC, Phys. Rev. D 74 (2006) 073005 [hep-ph/0606118] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • I. Brivio
    • 1
  • O. J. P. Éboli
    • 2
  • M. B. Gavela
    • 1
  • M. C. Gonzalez-García
    • 3
    • 4
    • 5
  • L. Merlo
    • 1
  • S. Rigolin
    • 6
  1. 1.Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSICUniversidad Autónoma de MadridMadridSpain
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.C.N. Yang Institute for Theoretical Physics and Department of Physics and AstronomySUNY at Stony BrookStony BrookU.S.A.
  4. 4.Departament d’Estructura i Constituents de la Matèria and ICC-UBUniversitat de BarcelonaBarcelonaSpain
  5. 5.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  6. 6.Dipartimento di Fisica e Astronomia “G. Galilei”Università di Padova and INFN — Sezione di PadovaPaduaItaly

Personalised recommendations