Advertisement

Journal of High Energy Physics

, 2012:120 | Cite as

Correlation functions in the holographic replica method

  • Yanwen Shang
Article

Abstract

Disorder has long been a difficult subject in condensed matter systems and the The replica method is a well-known tool in this field. Implementing the replica method the AdS/CFT correspondence has been proposed and discussed in literatures. We point out, for any CFT that has a holographic dual and to the leading order of the large-N expansion, the corrections due to the presence of random disorder to any connected correlation functions vanish identically, provided that the disorder strength is normalized as discussed in literatures and that the symmetry among replicas is unbroken. Same must hold true to any observables that are determined by the connected correlation functions through a linear relation. This behavior resembles strongly that of a free theory where disorder is coupled to the fundamental field. We demonstrate this by both the means of holographic principle and field theory analysis in a toy model. We also propose ways of evaluating the non-zero sub-leading effects perturbatively in terms of the disorder strength and discuss a novel possibility of defining a new holographic dual if we adopt a different normalization for the disorder strength.

Keywords

AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) Statistical Methods Quantum Dissipative Systems 

References

  1. [1]
    A. Zee, Quantum Field Theory in a Nutshell, 2nd ed., Princeton University Press, Princeton, U.S.A. (2003).MATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113 ] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  3. [3]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  5. [5]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  7. [7]
    S. Sachdev, Condensed Matter and AdS/CFT, arXiv:1002.2947 [INSPIRE].
  8. [8]
    A. Bayntun, C. Burgess, B.P. Dolan and S.-S. Lee, AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments, New J. Phys. 13 (2011) 035012 [arXiv:1008.1917] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  10. [10]
    M. Fujita, Y. Hikida, S. Ryu and T. Takayanagi, Disordered Systems and the Replica Method in AdS/CFT, JHEP 12 (2008) 065 [arXiv:0810.5394] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    L.-Y. Hung and Y. Shang, On 1-loop diagrams in AdS space, Phys. Rev. D 83 (2011) 024029 [arXiv:1007.2653] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].ADSGoogle Scholar
  15. [15]
    K. Binder and A. Young, Spin glasses: Experimental facts, theoretical concepts and open questions, Rev. Mod. Phys. 58 (1986) 801 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    O. Aharony, M. Berkooz and E. Silverstein, Multiple trace operators and nonlocal string theories, JHEP 08 (2001) 006 [hep-th/0105309] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Berkooz, A. Sever and A. Shomer, ’Double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A. Sever and A. Shomer, A Note on multitrace deformations and AdS/CFT, JHEP 07 (2002) 027 [hep-th/0203168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    O. Aharony, M. Berkooz and B. Katz, Non-local effects of multi-trace deformations in the AdS/CFT correspondence, JHEP 10 (2005) 097 [hep-th/0504177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S. Elitzur, A. Giveon, M. Porrati and E. Rabinovici, Multitrace deformations of vector and adjoint theories and their holographic duals, JHEP 02 (2006) 006 [hep-th/0511061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008)195014 [arXiv:0805.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    L. Vecchi, The Conformal Window of deformed CFTs in the planar limit, Phys. Rev. D 82 (2010) 045013 [arXiv:1004.2063] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    I. Arefeva, Reduced large-N models as amorphous systems, Phys. Lett. B 124 (1983) 221 [INSPIRE].ADSGoogle Scholar
  29. [29]
    I.Y. Arefeva, Quantum field theory models with a large number of colors and the statistical physics of disordered systems, Theor. Math. Phys. 54 (1983) 97 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    J.M. Maldacena, TASI 2003 lectures on AdS/CFT, hep-th/0309246 [INSPIRE].
  31. [31]
    J. Cardy, The Stress Tensor in Quenched Random Systems, cond-mat/0111031 (2001).
  32. [32]
    E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    C. Herzog and D. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations