Advertisement

Journal of High Energy Physics

, 2012:113 | Cite as

Effective action for higher spin fields on (A)dS backgrounds

  • Fiorenzo Bastianelli
  • Roberto Bonezzi
  • Olindo Corradini
  • Emanuele Latini
Article

Abstract

We study the one loop effective action for a class of higher spin fields by using a first-quantized description. The latter is obtained by considering spinning particles, characterized by an extended local supersymmetry on the worldline, that can propagate consistently on conformally flat spaces. The gauge fixing procedure for calculating the worldline path integral on a loop is delicate, as the gauge algebra contains nontrivial structure functions. Restricting the analysis on (A)dS backgrounds simplifies the gauge fixing procedure, and allows us to produce a useful representation of the one loop effective action. In particular, we extract the first few heat kernel coefficients for arbitrary even spacetime dimension D and for spin S identified by a curvature tensor with the symmetries of a rectangular Young tableau of D/2 rows and [S] columns.

Keywords

Extended Supersymmetry Field Theories in Higher Dimensions Sigma Models 

References

  1. [1]
    F. Bastianelli, O. Corradini and E. Latini, Higher spin fields from a worldline perspective, JHEP 02 (2007) 072 [hep-th/0701055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    M. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    D. Sorokin, Introduction to the classical theory of higher spins, AIP Conf. Proc. 767 (2005) 172 [hep-th/0405069] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Bouatta, G. Compere and A. Sagnotti, An Introduction to free higher-spin fields, hep-th/0409068 [INSPIRE].
  6. [6]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].
  7. [7]
    A. Fotopoulos and M. Tsulaia, Gauge Invariant Lagrangians for Free and Interacting Higher Spin Fields. A Review of the BRST formulation, Int. J. Mod. Phys. A 24 (2009) 1 [arXiv:0805.1346] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    A. Sagnotti, Notes on Strings and Higher Spins, arXiv:1112.4285 [INSPIRE].
  9. [9]
    F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys. B 642 (2002) 372 [hep-th/0205182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    F. Bastianelli, O. Corradini and A. Zirotti, Dimensional regularization for N = 1 supersymmetric σ-models and the worldline formalism, Phys. Rev. D 67 (2003) 104009 [hep-th/0211134] [INSPIRE].ADSGoogle Scholar
  11. [11]
    F. Bastianelli, O. Corradini and A. Zirotti, BRST treatment of zero modes for the worldline formalism in curved space, JHEP 01 (2004) 023 [hep-th/0312064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields, JHEP 04 (2005) 010 [hep-th/0503155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields. II., JHEP 10 (2005) 114 [hep-th/0510010] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    F. Bastianelli and C. Schubert, One loop photon-graviton mixing in an electromagnetic field: Part 1, JHEP 02 (2005) 069 [gr-qc/0412095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    F. Berezin and M. Mariñov, Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics, Annals Phys. 104 (1977) 336 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  16. [16]
    V.D. Gershun and V.I. Tkach, Classical and quantum dynamics of particles with arbitrary spin (in Russian), Pisma Zh. Eksp. Teor. Fiz. 29 (1979) 320 [Sov. Phys. JETP 29 (1979) 288].Google Scholar
  17. [17]
    P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, Wave equations for arbitrary spin from quantization of the extended supersymmetric spinning particle, Phys. Lett. B 215 (1988) 555 [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, A particle mechanics description of antisymmetric tensor fields, Class. Quant. Grav. 6 (1989) 1125 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    W. Siegel, Conformal invariance of extended spinning particle mechanics, Int. J. Mod. Phys. A 3(1988)2713 [INSPIRE].ADSGoogle Scholar
  20. [20]
    W. Siegel, All free conformal representations in all dimensions, Int. J. Mod. Phys. A 4 (1989)2015 [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Metsaev, All conformal invariant representations of d-dimensional anti-de Sitter group, Mod. Phys. Lett. A 10 (1995) 1719 [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS backgrounds, JHEP 11 (2008) 054 [arXiv:0810.0188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S. Kuzenko and Z. Yarevskaya, Conformal invariance, N extended supersymmetry and massless spinning particles in anti-de Sitter space, Mod. Phys. Lett. A 11 (1996) 1653 [hep-th/9512115] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    O. Corradini, Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models, JHEP 09 (2010) 113 [arXiv:1006.4452] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    F. Bastianelli, O. Corradini and A. Waldron, Detours and Paths: BRST Complexes and Worldline Formalism, JHEP 05 (2009) 017 [arXiv:0902.0530] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    D. Cherney, E. Latini and A. Waldron, BRST Detour Quantization, J. Math. Phys. 51 (2010) 062302 [arXiv:0906.4814] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D. Cherney, E. Latini and A. Waldron, Generalized Einstein Operator Generating Functions, Phys. Lett. B 682 (2010) 472 [arXiv:0909.4578] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Fronsdal, Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary Particles in a Curved Space. 7., Phys. Rev. D 20 (1979) 848 [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    I. Buchbinder, A. Pashnev and M. Tsulaia, Lagrangian formulation of the massless higher integer spin fields in the AdS background, Phys. Lett. B 523 (2001) 338 [hep-th/0109067] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    D. Francia and A. Sagnotti, Minimal local Lagrangians for higher-spin geometry, Phys. Lett. B 624 (2005) 93 [hep-th/0507144] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    I. Buchbinder, V. Krykhtin and A. Reshetnyak, BRST approach to Lagrangian construction for fermionic higher spin fields in (A)dS space, Nucl. Phys. B 787 (2007) 211 [hep-th/0703049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed Symmetry. I. Bose Fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained Higher Spins of Mixed Symmetry. II. Fermi Fields, Nucl. Phys. B 828 (2010) 405 [arXiv:0904.4447] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Campoleoni and D. Francia, Maxwell-like Lagrangians for higher spins, arXiv:1206.5877 [INSPIRE].
  37. [37]
    S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001)577 [hep-th/0103198] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    Y. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].
  40. [40]
    P. de Medeiros, Massive gauge invariant field theories on spaces of constant curvature, Class. Quant. Grav. 21 (2004) 2571 [hep-th/0311254] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  41. [41]
    R. Metsaev, Massive totally symmetric fields in AdS(d), Phys. Lett. B 590 (2004) 95 [hep-th/0312297] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    J.R. David, M.R. Gaberdiel and R. Gopakumar, The Heat Kernel on AdS 3 and its Applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    R. Gopakumar, R.K. Gupta and S. Lal, The Heat Kernel on AdS, JHEP 11 (2011) 010 [arXiv:1103.3627] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    R.K. Gupta and S. Lal, Partition Functions for Higher-Spin theories in AdS, JHEP 07 (2012)071 [arXiv:1205.1130] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    N. Marcus, Kähler spinning particles, Nucl. Phys. B 439 (1995) 583 [hep-th/9409175] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Bastianelli and R. Bonezzi, U(N) spinning particles and higher spin equations on complex manifolds, JHEP 03 (2009) 063 [arXiv:0901.2311] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    F. Bastianelli and R. Bonezzi, Quantum theory of massless (p,0)-forms, JHEP 09 (2011) 018 [arXiv:1107.3661] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    F. Bastianelli, R. Bonezzi and C. Iazeolla, Quantum theories of (p,q)-forms, JHEP 08 (2012) 045 [arXiv:1204.5954] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. De Boer, B. Peeters, K. Skenderis and P. Van Nieuwenhuizen, Loop calculations in quantum mechanical nonlinear σ-models, Nucl. Phys. B 446 (1995) 211 [hep-th/9504097] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. de Boer, B. Peeters, K. Skenderis and P. van Nieuwenhuizen, Loop calculations in quantum mechanical nonlinear σ-models σ-models with fermions and applications to anomalies, Nucl. Phys. B 459 (1996) 631 [hep-th/9509158] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F. Bastianelli, The Path integral for a particle in curved spaces and Weyl anomalies, Nucl. Phys. B 376 (1992) 113 [hep-th/9112035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    F. Bastianelli and P. van Nieuwenhuizen, Trace anomalies from quantum mechanics, Nucl. Phys. B 389 (1993) 53 [hep-th/9208059] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    F. Bastianelli, K. Schalm and P. van Nieuwenhuizen, Mode regularization, time slicing, Weyl ordering and phase space path integrals for quantum mechanical nonlinear σ-models, Phys. Rev. D 58 (1998) 044002 [hep-th/9801105] [INSPIRE].ADSGoogle Scholar
  55. [55]
    F. Bastianelli and O. Corradini, On mode regularization of the configuration space path integral in curved space, Phys. Rev. D 60 (1999) 044014 [hep-th/9810119] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    R. Bonezzi and M. Falconi, Mode Regularization for N = 1,2 SUSY σ-model, JHEP 10 (2008) 019 [arXiv:0807.2276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    H. Kleinert and A. Chervyakov, Reparametrization invariance of path integrals, Phys. Lett. B 464 (1999) 257 [hep-th/9906156] [INSPIRE].MathSciNetADSGoogle Scholar
  58. [58]
    F. Bastianelli, O. Corradini and P. van Nieuwenhuizen, Dimensional regularization of nonlinear σ-models on a finite time interval, Phys. Lett. B 494 (2000) 161 [hep-th/0008045] [INSPIRE].ADSGoogle Scholar
  59. [59]
    F. Bastianelli, O. Corradini and P. van Nieuwenhuizen, Dimensional regularization of the path integral in curved space on an infinite time interval, Phys. Lett. B 490 (2000) 154 [hep-th/0007105] [INSPIRE].ADSGoogle Scholar
  60. [60]
    F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge University Press, Cambridge, U.K. (2006).MATHCrossRefGoogle Scholar
  61. [61]
    F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Extended SUSY quantum mechanics: transition amplitudes and path integrals, JHEP 06 (2011) 023 [arXiv:1103.3993] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton, U.S.A. (1992).MATHGoogle Scholar
  63. [63]
    J. Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993) 1086.MathSciNetMATHCrossRefGoogle Scholar
  64. [64]
    M.L. Mehta, Random Matrices, 3rd ed., Elsevier Academic Press, Amsterdam (2004).MATHGoogle Scholar
  65. [65]
    K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18 (1987)545.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Fiorenzo Bastianelli
    • 1
  • Roberto Bonezzi
    • 1
  • Olindo Corradini
    • 2
    • 3
  • Emanuele Latini
    • 4
    • 5
  1. 1.Dipartimento di FisicaUniversità di Bologna and INFN, Sezione di BolognaBolognaItaly
  2. 2.Centro de Estudios en Física y Matemáticas Basicas y AplicadasUniversidad Autónoma de ChiapasTuxtla GutiérrezMexico
  3. 3.Dipartimento di FisicaUniversità di Modena e Reggio EmiliaModenaItaly
  4. 4.Institut für MathematikUniversität Zürich-IrchelZürichSwitzerland
  5. 5.INFN, Laboratori Nazionali di FrascatiFrascatiItaly

Personalised recommendations