Journal of High Energy Physics

, 2012:93 | Cite as

An A 4 × \( {{\mathbb{Z}}_4} \) model for neutrino mixing

  • Yoni BenTov
  • Xiao-Gang He
  • A. Zee


The A 4 × U(1) flavor model of He, Keum, and Volkas is extended to provide a minimal modification to tribimaximal mixing that accommodates a nonzero reactor angle θ 13 ~ 0.1. The sequestering problem is circumvented by forbidding superheavy scales and large coupling constants which would otherwise generate sizable RG flows. The model is compatible with (but does not require) a stable or metastable dark matter candidate in the form of a complex scalar field with unit charge under a discrete subgroup \( {{\mathbb{Z}}_4} \) of the U(1) flavor symmetry.


Neutrino Physics Discrete and Finite Symmetries 


  1. [1]
    H. Georgi, Towards a grand unified theory of flavor, Nucl. Phys. B 156 (1979) 126 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. De Rújula, H. Georgi and S. Glashow, A theory of flavor mixing, Annals Phys. 109 (1977) 258 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Wilczek and A. Zee, Discrete flavor symmetries and a formula for the Cabibbo angle, Phys. Lett. B 70 (1977) 418 [Erratum ibid. B 72 (1978) 504] [INSPIRE].
  4. [4]
    G. Sartori, Discrete symmetries, natural flavor conservation and weak mixing angles, Phys. Lett. B 82 (1979) 255 [INSPIRE].ADSGoogle Scholar
  5. [5]
    E. Derman and H.-S. Tsao, [SU(2) × U(1)] × S n flavor dynamics and a bound on the number of flavors, Phys. Rev. D 20 (1979) 1207 [INSPIRE].ADSGoogle Scholar
  6. [6]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].ADSGoogle Scholar
  7. [7]
    X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavor symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Babu, E. Ma and J. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, arXiv:1209.3023 [INSPIRE].
  10. [10]
    K. Babu and X.-G. He, Model of geometric neutrino mixing, hep-ph/0507217 [INSPIRE].
  11. [11]
    W. Grimus and L. Lavoura, TeV-scale seesaw mechanism catalyzed by the electron mass, Phys. Lett. B 687 (2010) 188 [arXiv:0912.4361] [INSPIRE].ADSGoogle Scholar
  12. [12]
    E. Ma, Naturally small seesaw neutrino mass with no new physics beyond the TeV scale, Phys. Rev. Lett. 86 (2001) 2502 [hep-ph/0011121] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R.A. Porto and A. Zee, The private Higgs, Phys. Lett. B 666 (2008) 491 [arXiv:0712.0448] [INSPIRE].ADSGoogle Scholar
  14. [14]
    W. Grimus, L. Lavoura and B. Radovčić, Type II seesaw mechanism for Higgs doublets and the scale of new physics, Phys. Lett. B 674 (2009) 117 [arXiv:0902.2325] [INSPIRE].ADSGoogle Scholar
  15. [15]
    X.-G. He and A. Zee, Minimal modification to the tri-bimaximal neutrino mixing, Phys. Lett. B 645 (2007) 427 [hep-ph/0607163] [INSPIRE].ADSGoogle Scholar
  16. [16]
    X.-G. He and A. Zee, Minimal modification to tri-bimaximal mixing, Phys. Rev. D 84 (2011) 053004 [arXiv:1106.4359] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  20. [20]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    D.E. Holz and A. Zee, Collisional dark matter and scalar phantoms, Phys. Lett. B 517 (2001) 239 [hep-ph/0105284] [INSPIRE].ADSGoogle Scholar
  22. [22]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Fermi LAT collaboration, M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope, Phys. Rev. Lett. 108 (2012) 011103 [arXiv:1109.0521] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Cirelli, E. Moulin, P. Panci, P.D. Serpico and A. Viana, Gamma ray constraints on decaying dark matter, Phys. Rev. D 86 (2012) 083506 [arXiv:1205.5283] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Ma, Neutrino tribimaximal mixing from A 4 alone, Mod. Phys. Lett. A 25 (2010) 2215 [arXiv:0908.3165] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S.F. King, Vacuum misalignment corrections to tri-bimaximal mixing and form dominance, JHEP 01 (2011) 115 [arXiv:1011.6167] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    W. Chao and Y.-J. Zheng, Relatively large θ 13 from modification to the tri-bimaximal, bimaximal and democratic neutrino mixing matrices, arXiv:1107.0738 [INSPIRE].
  28. [28]
    A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 [hep-ph/0508278] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].ADSGoogle Scholar
  30. [30]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  31. [31]
    C.T. Hill, C.N. Leung and S. Rao, Renormalization group fixed points and the Higgs boson spectrum, Nucl. Phys. B 262 (1985) 517 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.INPAC, Department of Physics and Shanghai Key Laboratory for Particle Physics and CosmologyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.CTS, CASTS and Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  5. 5.Department of Physics, National Tsing Hua University and National Center for Theoretical SciencesHsinchuTaiwan

Personalised recommendations