Advertisement

Journal of High Energy Physics

, 2012:84 | Cite as

A Fefferman-Graham-like expansion for null warped AdS3

  • Monica Guica
Article

Abstract

We consider null warped AdS 3 solutions of three-dimensional gravity coupled to a massive vector field. We isolate a certain set of non-propagating solutions to the equations of motion, which we argue are the ones relevant for understanding the stress tensor sector of the dual field theory. We construct a map from these modes to solutions of three-dimensional Einstein gravity with a negative cosmological constant, and thus show that they admit a Fefferman-Graham-like asymptotic expansion. We also compute the renormalized on-shell action for these modes at full non-linear level and propose that the dual stress-energy tensor couples to the boundary metric of the auxiliary AdS 3 spacetime. The holographic stress tensor we obtain is symmetric, conserved and its trace yields the same conformal anomaly as in AdS 3.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  3. [3]
    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
  4. [4]
    D. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP 12 (2012) 009 [arXiv:1108.6091] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    W. Song and A. Strominger, Warped AdS 3/dipole-CFT duality, JHEP 05 (2012) 120 [arXiv:1109.0544] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  13. [13]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Hartong and B. Rollier, Asymptotically Schrödinger space-times: TsT transformations and thermodynamics, JHEP 01 (2011) 084 [arXiv:1009.4997] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    R. Caldeira Costa and M. Taylor, Holography for chiral scale-invariant models, JHEP 02 (2011) 082 [arXiv:1010.4800] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S. Hollands, A. Ishibashi and D. Marolf, Counter-term charges generate bulk symmetries, Phys. Rev. D 72 (2005) 104025 [hep-th/0503105] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP 08 (2011) 093 [arXiv:1102.2239] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    S. Hollands, A. Ishibashi and D. Marolf, Comparison between various notions of conserved charges in asymptotically AdS-spacetimes, Class. Quant. Grav. 22 (2005) 2881 [hep-th/0503045] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    G. Compere and F. Dehouck, Relaxing the parity conditions of asymptotically flat gravity, Class. Quant. Grav. 28 (2011) 245016 [arXiv:1106.4045] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.

Personalised recommendations