Advertisement

Journal of High Energy Physics

, 2012:64 | Cite as

Dark Matter and enhanced h → γγ rate from vector-like Leptons

  • Aniket Joglekar
  • Pedro Schwaller
  • Carlos E. M. Wagner
Article

Abstract

In this paper, we study an extension of the standard model with a vector-like generation of leptons. This model provides a viable dark matter candidate and a possibility to enhance the Higgs decay rate into a pair of photons. We evaluate constraints from electroweak precision tests and from vacuum stability, and find that the latter provide an upper limit on the lepton Yukawa couplings. A large enhancement of the Higgs di-photon rate can therefore only be obtained when the mass of the lightest charged lepton is close to the LEP limit. The relic density constraint suggests a co-annihilation scenario with a small mass difference between the lightest charged and neutral leptons, which also weakens the LEP limit on the lightest charged lepton mass and allows for larger Higgs di-photon decay rates. Cross sections for direct detection of the dark matter candidate are calculated, and prospects for detecting the new particles at the LHC are discussed briefly.

Keywords

Higgs Physics Beyond Standard Model Cosmology of Theories beyond the SM 

References

  1. [1]
    ATLAS collaboration, Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).
  2. [2]
    J. Incandela, Stauts of the CMS SM Higgs search, talk given at the seminar Latest update in the search for the Higgs boson, CERN, Geneva, 4 July 2012 [http://indico.cern.ch/conferenceDisplay.py?confId=197461].
  3. [3]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012)111803 [arXiv:1202.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    CMS collaboration, Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].ADSGoogle Scholar
  5. [5]
    ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).Google Scholar
  6. [6]
    CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, HIG-12-015.
  7. [7]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSGoogle Scholar
  8. [8]
    I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, arXiv:1207.1717 [INSPIRE].
  11. [11]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H.-S. Lee and A. Soni, Fourth Generation Parity, arXiv:1206.6110 [INSPIRE].
  14. [14]
    K. Ishiwata and M.B. Wise, Higgs Properties and Fourth Generation Leptons, Phys. Rev. D 84 (2011) 055025 [arXiv:1107.1490] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.M. Arnold, P. Fileviez Perez, B. Fornal and S. Spinner, On Higgs Decays, Baryon Number Violation and SUSY at the LHC, Phys. Rev. D 85 (2012) 115024 [arXiv:1204.4458] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  17. [17]
    O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Cynolter and E. Lendvai, Electroweak Precision Constraints on Vector-like Fermions, Eur. Phys. J. C 58 (2008) 463 [arXiv:0804.4080] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  20. [20]
    Particle Data Group collaboration, C. Amsler et al., Review of Particle Physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  23. [23]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  24. [24]
    A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stal, G. Weiglein and L. Zeune, Confronting the MSSM and the NMSSM with the Discovery of a Signal in the two Photon Channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H. An, T. Liu and L.-T. Wang, 125 GeV Higgs Boson, Enhanced Di-photon Rate and Gauged U(1)P Q -Extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M.R. Buckley and D. Hooper, Are There Hints of Light Stops in Recent Higgs Search Results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Akeroyd and S. Moretti, Enhancement of H → γγ from doubly charged scalars in the Higgs Triplet Model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].ADSGoogle Scholar
  33. [33]
    B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs Portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II Seesaw Model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Arhrib, R. Benbrik and N. Gaur, H → γγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].ADSGoogle Scholar
  36. [36]
    L. Wang and X.-F. Han, LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model, JHEP 05 (2012) 088 [arXiv:1203.4477] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on New Scalars from the LHC 125 GeV Higgs Signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C.-W. Chiang and K. Yagyu, Higgs boson decays to γγ and Zγ in models with Higgs extensions, arXiv:1207.1065 [INSPIRE].
  39. [39]
    F. Goertz, U. Haisch and M. Neubert, Bounds on Warped Extra Dimensions from a Standard Model-like Higgs Boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].ADSGoogle Scholar
  40. [40]
    N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].ADSGoogle Scholar
  41. [41]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].ADSGoogle Scholar
  43. [43]
    V. Barger, M. Ishida and W.-Y. Keung, Flavor-Tuned 125 GeV SUSY Higgs Boson at the LHC: MSSM and NATURAL SUSY TESTS, arXiv:1207.0779 [INSPIRE].
  44. [44]
    J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγ→ℓℓγ channel, Phys. Rev. D 86 (2012) 033010 [arXiv:1112.1405][INSPIRE].ADSGoogle Scholar
  45. [45]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Lindner, Implications of Triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].ADSGoogle Scholar
  47. [47]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSGoogle Scholar
  48. [48]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori and A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    W.-Y. Keung and P. Schwaller, Long Lived Fourth Generation and the Higgs, JHEP 06 (2011) 054 [arXiv:1103.3765] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Angle et al., Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. 101 (2008) 091301 [arXiv:0805.2939] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Heikinheimo, K. Tuominen and J. Virkajarvi, Invisible Higgs and Dark Matter, JHEP 07 (2012) 117 [arXiv:1203.5766] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Y.S. Jeong, C. Kim and M.H. Reno, Majorana Dark Matter Cross sections with Nucleons at High Energies, Phys. Rev. D 86 (2012) 094025 [arXiv:1207.1526] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati and A. Semenov, Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  55. [55]
    G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].ADSGoogle Scholar
  57. [57]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    COUPP collaboration, E. Behnke et al., First Dark Matter Search Results from a 4-kg CF 3 I Bubble Chamber Operated in a Deep Underground Site, Phys. Rev. D 86 (2012) 052001 [arXiv:1204.3094] [INSPIRE].ADSGoogle Scholar
  60. [60]
    CMS collaboration, Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy, Phys. Rev. Lett. 108 (2012) 261803 [arXiv:1204.0821] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for Naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].
  63. [63]
    R. Dermisek, Insensitive Unification of Gauge Couplings, Phys. Lett. B 713 (2012) 469 [arXiv:1204.6533] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Aniket Joglekar
    • 1
  • Pedro Schwaller
    • 2
    • 3
  • Carlos E. M. Wagner
    • 1
    • 2
    • 4
  1. 1.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A
  2. 2.HEP Division, Argonne National LaboratoryArgonneU.S.A
  3. 3.Physics DepartmentUniversity of Illinois at ChicagoChicagoU.S.A
  4. 4.Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A

Personalised recommendations