Advertisement

Journal of High Energy Physics

, 2012:51 | Cite as

Pure spinor superstring in \( \mathrm{Ad}{{\mathrm{S}}_4}\times \mathbb{C}{{\mathrm{P}}^3} \) with unconstrained ghosts

  • Marisa Bonini
  • Alessio Camobreco
Article
  • 65 Downloads

Abstract

We construct the action for the pure spinor superstring in the coset description of \( \mathrm{Ad}{{\mathrm{S}}_4}\times \mathbb{C}{{\mathrm{P}}^3} \) superspace, using the variables which solve the pure spinor condition. As a test of the consistency of the approach, we use the background field method to verify the absence of central charge at the second order in the expansion and to show the one-loop finiteness of the effective action.

Keywords

AdS-CFT Correspondence Superspaces Sigma Models 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    M.T. Grisaru, P.S. Howe, L. Mezincescu, B. Nilsson and P. Townsend, \( \mathcal{N}=2 \) superstrings in a supergravity background, Phys. Lett. B 162 (1985) 116 [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS5 × S5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Henneaux and L. Mezincescu, A σ-model interpretation of Green-Schwarz covariant superstring action, Phys. Lett. B 152 (1985) 340 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on AdS2 × S2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Y. Oz, The pure spinor formulation of superstrings, Class. Quant. Grav. 25 (2008) 214001 [arXiv:0910.1195] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    O.A. Bedoya and N. Berkovits, GGI lectures on the pure spinor formalism of the superstring, arXiv:0910.2254 [INSPIRE].
  11. [11]
    V.G.M. Puletti, On string integrability: a journey through the two-dimensional hidden symmetries in the AdS/CFT dualities, Adv. High Energy Phys. 2010 (2010) 471238 [arXiv:1006.3494] [INSPIRE].MathSciNetGoogle Scholar
  12. [12]
    L. Mazzucato, Superstrings in AdS, Phys. Rept. 521 (2012) 1 [arXiv:1104.2604] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    N. Berkovits and O. Chand´ıa, Superstring vertex operators in an AdS5 × S5 background, Nucl. Phys. B 596 (2001) 185 [hep-th/0009168] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N}=6 \) superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    G. Arutyunov and S. Frolov, Superstrings on \( \mathrm{Ad}{{\mathrm{S}}_4}\times \mathbb{C}{{\mathrm{P}}^3} \) as a coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    B. Stefanski Jr., Green-Schwarz action for type IIA strings on \( \mathrm{Ad}{{\mathrm{S}}_4}\times \mathbb{C}{{\mathrm{P}}^3} \), Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Uvarov, \( \mathrm{Ad}{{\mathrm{S}}_4}\times \mathbb{C}{{\mathrm{P}}^3} \) superstring and D = 3 \( \mathcal{N}=6 \) superconformal symmetry, Phys. Rev. D 79 (2009) 106007 [arXiv:0811.2813] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    J. Gomis, D. Sorokin and L. Wulff, The complete \( \mathrm{Ad}{{\mathrm{S}}_4}\times \mathbb{C}{{\mathrm{P}}^3} \) superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    P. Fré and P.A. Grassi, Pure spinor formalism for Osp(N |4) backgrounds, arXiv:0807.0044 [INSPIRE].
  20. [20]
    G. Bonelli, P.A. Grassi and H. Safaai, Exploring pure spinor string theory on \( \mathrm{Ad}{{\mathrm{S}}_4}\times \mathbb{C}{{\mathrm{P}}^3} \), JHEP 10 (2008) 085 [arXiv:0808.1051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    R. D’Auria, P. Fré, P.A. Grassi and M. Trigiante, Superstrings on \( \mathrm{Ad}{{\mathrm{S}}_4}\times \mathbb{C}{{\mathrm{P}}^3} \) from supergravity, Phys. Rev. D 79 (2009) 086001 [arXiv:0808.1282] [INSPIRE].ADSGoogle Scholar
  22. [22]
    V. Serganova, Classification of real simple Lie superalgebras and symmetric superspaces, Funct. Anal. Appl. 17 (1983) 200 [Funkt. Anal. Pril. 17 (1983) 46] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    K. Zarembo, Strings on semisymmetric superspaces, JHEP 05 (2010) 002 [arXiv:1003.0465] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    N. Berkovits, Quantum consistency of the superstring in AdS5 × S5 background, JHEP 03 (2005) 041 [hep-th/0411170] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    N. Berkovits, Simplifying and extending the AdS5 × S5 pure spinor formalism, JHEP 09 (2009) 051 [arXiv:0812.5074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    V. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].MATHCrossRefGoogle Scholar
  27. [27]
    A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievtsky and E. Sokatchev, Extended supersymmetry in harmonic superspace, in Supersymmetry and supergravity ’84. Proceedings of the Trieste Spring School April 4-14 1984, World Scientific, Singapore (1984), pg. 449 [INSPIRE].
  28. [28]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained \( \mathcal{N}=2 \) matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].MathSciNetGoogle Scholar
  31. [31]
    J. de Boer and K. Skenderis, Covariant computation of the low-energy effective action of the heterotic superstring, Nucl. Phys. B 481 (1996) 129 [hep-th/9608078] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L. Mazzucato and B.C. Vallilo, On the non-renormalization of the AdS radius, JHEP 09 (2009) 056 [arXiv:0906.4572] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    B.C. Vallilo, One loop conformal invariance of the superstring in an AdS 5 × S 5 background, JHEP 12 (2002) 042 [hep-th/0210064] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    I. Oda and M. Tonin, On the Berkovits covariant quantization of GS superstring, Phys. Lett. B 520 (2001) 398 [hep-th/0109051] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Dipartimento di Fisica “M. Melloni”Università di Parma and INFN, Gruppo collegato di ParmaParmaItaly

Personalised recommendations