Advertisement

Journal of High Energy Physics

, 2011:101 | Cite as

Flavour physics in the soft wall model

  • Paul R. Archer
  • Stephan J. Huber
  • Sebastian Jäger
Article

Abstract

We extend the description of flavour that exists in the Randall-Sundrum (RS) model to the soft wall (SW) model in which the IR brane is removed and the Higgs is free to propagate in the bulk. It is demonstrated that, like the RS model, one can generate the hierarchy of fermion masses by localising the fermions at different locations throughout the space. However, there are two significant differences. Firstly the possible fermion masses scale down, from the electroweak scale, less steeply than in the RS model and secondly there now exists a minimum fermion mass for fermions sitting towards the UV brane. With a quadratic Higgs VEV, this minimum mass is about fifteen orders of magnitude lower than the electroweak scale. We derive the gauge propagator and despite the KK masses scaling as \( m_n^2 \sim n \), it is demonstrated that the coefficients of four fermion operators are not divergent at tree level. FCNC’s amongst kaons and leptons are considered and compared to calculations in the RS model, with a brane localised Higgs and equivalent levels of tuning. It is found that since the gauge fermion couplings are slightly more universal and the SM fermions typically sit slightly further towards the UV brane, the contributions to observables such as ε K and Δm K , from the exchange of KK gauge fields, are significantly reduced.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

References

  1. [1]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].MATHADSMathSciNetGoogle Scholar
  3. [3]
    E. Schreiber, Excited mesons and quantization of string endpoints, hep-th/0403226 [INSPIRE].
  4. [4]
    M. Shifman, Highly excited hadrons in QCD and beyond, hep-ph/0507246 [INSPIRE].
  5. [5]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  6. [6]
    A. Falkowski and M. Pérez-Victoria, Electroweak breaking on a soft wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    B. Batell, T. Gherghetta and D. Sword, The soft-wall standard model, Phys. Rev. D 78 (2008) 116011 [arXiv:0808.3977] [INSPIRE].ADSGoogle Scholar
  8. [8]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  9. [9]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MATHMathSciNetGoogle Scholar
  22. [22]
    S. Aybat and D.P. George, Stability of scalar fields in warped extra dimensions, JHEP 09 (2010) 010 [arXiv:1006.2827] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    D.P. George and M. Postma, Avoiding the dangers of a soft-wall singularity, arXiv:1105.3390 [INSPIRE].
  24. [24]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-wall stabilization, New J. Phys. 12 (2010) 075012 [arXiv:0907.5361] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    T. Gherghetta and N. Setzer, On the stability of a soft-wall model, Phys. Rev. D 82 (2010) 075009 [arXiv:1008.1632] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing electroweak precision observables in 5D warped models, JHEP 05 (2011) 083 [arXiv:1103.1388] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    J.A. Cabrer, G. von Gersdorff and M. Quirós, Warped electroweak breaking without custodial symmetry, Phys. Lett. B 697 (2011) 208 [arXiv:1011.2205] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Carmona, E. Ponton and J. Santiago, Phenomenology of non-custodial warped models, arXiv:1107.1500 [INSPIRE].
  29. [29]
    A. Delgado and D. Diego, Fermion mass hierarchy from the soft wall, Phys. Rev. D 80 (2009) 024030 [arXiv:0905.1095] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T. Gherghetta and D. Sword, Fermion flavor in soft-wall AdS, Phys. Rev. D 80 (2009) 065015 [arXiv:0907.3523] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Mert Aybat and J. Santiago, Bulk fermions in warped models with a soft wall, Phys. Rev. D 80 (2009) 035005 [arXiv:0905.3032] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Atkins and S.J. Huber, Suppressing lepton flavour violation in a soft-wall extra dimension, Phys. Rev. D 82 (2010) 056007 [arXiv:1002.5044] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A.D. Medina and E. Ponton, Warped universal extra dimensions, JHEP 06 (2011) 009 [arXiv:1012.5298] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [INSPIRE].ADSGoogle Scholar
  35. [35]
    K. Agashe, A.E. Blechman and F. Petriello, Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation, Phys. Rev. D 74 (2006) 053011 [hep-ph/0606021] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    S. Aybat and J. Santiago, Bulk fermions in soft wall models, AIP Conf. Proc. 1200 (2010) 611 [arXiv:0909.3999] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    K. Agashe, T. Okui and R. Sundrum, A common origin for neutrino anarchy and charged hierarchies, Phys. Rev. Lett. 102 (2009) 101801 [arXiv:0810.1277] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS 5, JHEP 11 (2001) 003 [hep-th/0108114] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas graphs and mathematical tables, ninth Dover printing, tenth GPO printing edition, Dover, New York U.S.A. (1964).Google Scholar
  41. [41]
    L.J. Slater, Confluent hypergeometric functions, Cambridge University Press, Cambridge U.K. (1960).MATHGoogle Scholar
  42. [42]
    H. Buchholz, The confluent hypergeometric function, Springer, Heidelberg Germany (1969).MATHGoogle Scholar
  43. [43]
    I. Gradshteyn and I. Ryzhik, Table of integrals, series and products, seventh edition, Elsevier, New York U.S.A. (2007).MATHGoogle Scholar
  44. [44]
    P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z boson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  46. [46]
    K. Hayasaka et al., Search for lepton flavor violating τ decays into three leptons with 719 million produced τ +τ pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].ADSGoogle Scholar
  47. [47]
    O. Gedalia, G. Isidori and G. Perez, Combining direct & indirect kaon CP-violation to constrain the warped KK scale, Phys. Lett. B 682 (2009) 200 [arXiv:0905.3264] [INSPIRE]ADSGoogle Scholar
  48. [48]
    W.-F. Chang, J.N. Ng and J.M. Wu, Flavour changing neutral current constraints from Kaluza-Klein gluons and quark mass matrices in RS1, Phys. Rev. D 79 (2009) 056007 [arXiv:0809.1390] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.A. Bagger, K.T. Matchev and R.-J. Zhang, QCD corrections to flavor changing neutral currents in the supersymmetric standard model, Phys. Lett. B 412 (1997) 77 [hep-ph/9707225] [INSPIRE].ADSGoogle Scholar
  50. [50]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators -and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A.J. Buras and D. Guadagnoli, On the consistency between the observed amount of CP-violation in the K and B d -systems within minimal flavor violation, Phys. Rev. D 79 (2009) 053010 [arXiv:0901.2056] [INSPIRE].ADSGoogle Scholar
  53. [53]
    E. Lunghi and A. Soni, Possible indications of new physics in B d -mixing and in sin(2β) determinations, Phys. Lett. B 666 (2008) 162 [arXiv:0803.4340] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    R. Babich et al., \( {K^0} - {\overline {\text{K}}^0} \) mixing beyond the standard model and CP-violating electroweak penguins in quenched QCD with exact chiral symmetry, Phys. Rev. D 74 (2006) 073009 [hep-lat/0605016] [INSPIRE].ADSGoogle Scholar
  56. [56]
    R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE]CrossRefADSGoogle Scholar
  57. [57]
    A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNC’s in warped extra dimensions,Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].ADSGoogle Scholar
  58. [58]
    K. Agashe and R. Contino, Composite Higgs-mediated FCNC, Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542] [INSPIRE].ADSGoogle Scholar
  59. [59]
    A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Paul R. Archer
    • 1
  • Stephan J. Huber
    • 1
  • Sebastian Jäger
    • 1
  1. 1.Department of Physics & AstronomyUniversity of SussexBrightonU.K.

Personalised recommendations