Advertisement

Journal of High Energy Physics

, 2011:98 | Cite as

Some properties of (3 + 1) dimensional vortex solutions in the extended CP N Skyrme-Faddeev model

  • L. A. Ferreira
  • P. Klimas
  • W. J. Zakrzewski
Article

Abstract

We look at properties of vortex solutions of the extended CP N SkyrmeFaddeev model. We show that only holomorphic solutions of the CP N model are also solutions of the Skyrme-Faddeev model. As the total energy of these solutions is infinite these solutions should be interpreted as describing time dependent vortices. We describe their dynamics and, in partcular, point out that one of the terms in the energy density is related to the Noether charge of the model.

Keywords

Integrable Field Theories Integrable Hierarchies Integrable Equations in Physics Solitons Monopoles and Instantons 

References

  1. [1]
    S.R. Coleman, The quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975) 2088 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Mandelstam, Soliton operators for the quantized sine-Gordon equation, Phys. Rev. D 11 (1975) 3026 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    C. Montonen and D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett. B 72 (1977) 117 [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087]. [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional selffocusing and one-dimensional selfmodulation of waves in nonlinear media (in Russian), Zh. Exp. Teor. Fiz. 61 (1971) 118 [Sov. Phys. JETP 34 (1972) 62] [INSPIRE].Google Scholar
  8. [8]
    O. Alvarez, L.A. Ferreira and J. Sanchez Guillen, A new approach to integrable theories in any dimension, Nucl. Phys. B 529 (1998) 689 [hep-th/9710147]. [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    O. Alvarez, L. Ferreira and J. Sanchez-Guillen, Integrable theories and loop spaces: fundamentals, applications and new developments, Int. J. Mod. Phys. A 24 (2009) 1825 [arXiv:0901.1654] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    L. Ferreira and G. Luchini, An integral formulation of Yang-Mills on loop space, arXiv:1109.2120. [INSPIRE].
  11. [11]
    L. Ferreira and G. Luchini, Gauge and integrable theories in loop spaces, arXiv:1109.2606. [INSPIRE].
  12. [12]
    L.D. Faddeev, Quantization of solitons, Princeton preprint IAS Print-75-QS (1975) 70.Google Scholar
  13. [13]
    L.D. Faddeev, 40 years in mathematical physics, World Scientific, Singapore (1995).MATHGoogle Scholar
  14. [14]
    L. Faddeev and A.J. Niemi, Knots and particles, Nature 387 (1997) 58 [hep-th/9610193]. [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    P. Sutcliffe, Knots in the Skyrme-Faddeev model, Proc. Roy. Soc. Lond. A 463 (2007) 3001 [arXiv:0705.1468] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    J. Hietarinta and P. Salo, Faddeev-Hopf knots: dynamics of linked unknots, Phys. Lett. B 451 (1999) 60 [hep-th/9811053]. [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    J. Hietarinta and P. Salo, Ground state in the Faddeev-Skyrme model, Phys. Rev. D 62 (2000) 081701 [INSPIRE].ADSGoogle Scholar
  18. [18]
    L. Ferreira and P. Klimas, Exact vortex solutions in a CP N Skyrme-Faddeev type model, JHEP 10 (2010) 008 [arXiv:1007.1667]. [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    K.-I. Kondo, T. Shinohara and T. Murakami, Reformulating SU(N) Yang-Mills theory based on change of variables, Prog. Theor. Phys. 120 (2008) 1 [arXiv:0803.0176] [INSPIRE].CrossRefMATHADSGoogle Scholar
  20. [20]
    L. Ferreira, Exact vortex solutions in an extended Skyrme-Faddeev model, JHEP 05 (2009) 001 [arXiv:0809.4303] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    H. Gies, Wilsonian effective action for SU(2) Yang-Mills theory with Cho-Faddeev-Niemi-Shabanov decomposition, Phys. Rev. D 63 (2001) 125023 [hep-th/0102026] [INSPIRE].ADSGoogle Scholar
  22. [22]
    L. Ferreira, P. Klimas and W. Zakrzewski, Some (3 + 1) dimensional vortex solutions of the CP N model, Phys. Rev. D 83 (2011) 105018 [arXiv:1103.0559] [INSPIRE].ADSGoogle Scholar
  23. [23]
    L. Ferreira, P. Klimas and W. Zakrzewski, Some (3 + 1) dimensional vortex solutions of the CP N model, Phys. Rev. D 83 (2011) 105018 [arXiv:1103.0559] [INSPIRE].ADSGoogle Scholar
  24. [24]
    W.J. Zakrzewski, Low dimensional sigma models, Hilger, Bristol U.K. (1989).MATHGoogle Scholar
  25. [25]
    L. Ferreira, P. Klimas and W. Zakrzewski, Properties of some (3 + 1) dimensional vortex solutions of the CP N model, Phys. Rev. D 84 (2011) 085022 [arXiv:1108.4401] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Instituto de Física de São Carlos, IFSC/USPUniversidade de São PauloSão Carlos-SPBrazil
  2. 2.Department of Mathematical SciencesUniversity of DurhamDurhamUK

Personalised recommendations