Advertisement

Journal of High Energy Physics

, 2011:79 | Cite as

The generalized Kähler geometry of N = (2, 2) WZW-models

  • Alexander Sevrin
  • Wieland Staessens
  • Dimitri Terryn
Article

Abstract

N = (2, 2), d = 2 supersymmetric non-linear σ-models provide a physical realization of Hitchin’s and Gualtieri’s generalized Kähler geometry. A large subclass of such models are comprised by WZW-models on even-dimensional reductive group manifolds. In the present paper we analyze the complex structures, type changing, the superfield content and the affine isometries compatible with the extra supersymmetry. The results are illustrated by an exhaustive discussion of the N = (2, 2) WZW-models on S 3 × S 1 and S 3 × S 3 where various aspects of generalized Kähler and Calabi-Yau geometry are verified and clarified. The examples illustrate a slightly weaker definition for an N = (2, 2) superconformal generalized Kähler geometry compared to that for a generalized Calabi-Yau geometry.

Keywords

Flux compactifications Superstrings and Heterotic Strings Superstring Vacua 

References

  1. [1]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099].CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    M. Gualtieri, Generalized complex geometry, Ph.D. Thesis, Oxford University, Oxford U.K. (2003) [math/0401221].Google Scholar
  3. [3]
    M. Gualtieri, Generalized complex geometry, math/0703298.
  4. [4]
    M. Gualtieri, Generalized Kähler geometry, arXiv:1007.3485 [INSPIRE].
  5. [5]
    N. Hitchin, Lectures on generalized geometry, arXiv:1008.0973 [INSPIRE].
  6. [6]
    J. Gates, S.J., C. Hull and M. Roček, Twisted Multiplets and New Supersymmetric Nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].
  7. [7]
    P.S. Howe and G. Sierra, Two-dimensional supersymmetric nonlinear σ-models with torsion, Phys. Lett. B 148 (1984) 451 [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [INSPIRE].CrossRefMATHADSGoogle Scholar
  9. [9]
    T. Buscher, U. Lindström and M. Roček, New supersymmetric σ-models with Wess-Zumino terms, Phys. Lett. B 202 (1988) 94 [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Sevrin and J. Troost, Off-shell formulation of N = 2 nonlinear σ-models, Nucl. Phys. B 492 (1997) 623 [hep-th/9610102] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    M.T. Grisaru, M. Massar, A. Sevrin and J. Troost, Some aspects of N = (2, 2), D = 2 supersymmetry, Fortsch. Phys. 47 (1999) 301 [hep-th/9801080] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    J. Bogaerts, A. Sevrin, S. van der Loo and S. Van Gils, Properties of semichiral superfields, Nucl. Phys. B 562 (1999) 277 [hep-th/9905141] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    M.T. Grisaru, M. Massar, A. Sevrin and J. Troost, The Quantum geometry of N = (2, 2) nonlinear σ-models, Phys. Lett. B 412 (1997) 53 [hep-th/9706218] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    C.M. Hull, U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Calabi-Yau metric and Generalized Monge-Ampere equation, JHEP 08 (2010) 060 [arXiv:1005.5658] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    M. Roček, K. Schoutens and A. Sevrin, Off-shell WZW models in extended superspace, Phys. Lett. B 265 (1991) 303 [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Roček, C.-h. Ahn, K. Schoutens and A. Sevrin, Superspace WZW models and black holes, hep-th/9110035 [INSPIRE].
  17. [17]
    C.M. Hull, U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler geometry and gerbes, JHEP 10 (2009) 062 [arXiv:0811.3615] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    A. Sevrin, W. Staessens and A. Wijns, An N = 2 worldsheet approach to D-branes in bihermitian geometries: II. The General case, JHEP 09 (2009) 105 [arXiv:0908.2756] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    P. Spindel, A. Sevrin, W. Troost and A. Van Proeyen, Complex structures on parallelized group manifolds and supersymmetric σ-models, Phys. Lett. B 206 (1988) 71 [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Spindel, A. Sevrin, W. Troost and A. Van Proeyen, Extended Supersymmetric σ-models on Group Manifolds. 1. The Complex Structures, Nucl. Phys. B 308 (1988) 662 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    H. Samelson, A class of complex-analytic manifolds, Portug. Math. 12 (1953) 129.MATHMathSciNetGoogle Scholar
  22. [22]
    H. Wang, Complex parallisable manifolds, Proc. Am. Math. Soc. 5 (1954) 771.CrossRefMATHGoogle Scholar
  23. [23]
    D. Joyce, Compact Hypercomplex and Quaternionic Manifolds, J. Diff. Geom. 35 (1992) 743.MATHMathSciNetGoogle Scholar
  24. [24]
    N. Halmagyi and A. Tomasiello, Generalized Kähler Potentials from Supergravity, Commun. Math. Phys. 291 (2009) 1 [arXiv:0708.1032] [INSPIRE].CrossRefMATHADSMathSciNetGoogle Scholar
  25. [25]
    C. Hull, Complex structures and isometries in the (2, 0) supersymmetric nonlinear σ-model, Mod. Phys. Lett. A 5 (1990) 1793 [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    C. Hull and B.J. Spence, The (2, 0) supersymmetric Wess-Zumino-Witten model, Nucl. Phys. B 345 (1990) 493 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    I.T. Ivanov, B.-b. Kim and M. Roček, Complex structures, duality and WZW models in extended superspace, Phys. Lett. B 343 (1995) 133 [hep-th/9406063] [INSPIRE].ADSGoogle Scholar
  28. [28]
    U. Lindström, M. Roček, I. Ryb, R. von Unge and M. Zabzine, New N = (2, 2) vector multiplets, JHEP 08 (2007) 008 [arXiv:0705.3201] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    J. Gates, S.James and W. Merrell, D = 2 N = (2,2) Semi Chiral Vector Multiplet, JHEP 10 (2007) 035 [arXiv:0705.3207] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    U. Lindström, M. Roček, I. Ryb, R. von Unge and M. Zabzine, T-duality and Generalized Kähler Geometry, JHEP 02 (2008) 056 [arXiv:0707.1696] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    W. Merrell and D. Vaman, T-duality, quotients and generalized Kähler geometry, Phys. Lett. B 665 (2008) 401 [arXiv:0707.1697] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    M. Roček, private communication and work in progress.Google Scholar
  33. [33]
    C. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ-models and their gauging in and out of superspace, Nucl. Phys. B 266 (1986) 1 [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    A. Sevrin, W. Staessens and A. Wijns, An N = 2 worldsheet approach to D-branes in bihermitian geometries. I. Chiral and twisted chiral fields, JHEP 10 (2008) 108 [arXiv:0809.3659] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    C. Hull and P. Townsend, Finiteness and conformal invariance in nonlinear σ-models, Nucl. Phys. B 274 (1986) 349 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Alexander Sevrin
    • 1
  • Wieland Staessens
    • 2
  • Dimitri Terryn
    • 1
  1. 1.Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay InstitutesBrusselsBelgium
  2. 2.Institut für Physik (WA THEP)Johannes-Gutenberg-UniversitätMainzGermany

Personalised recommendations