Advertisement

Journal of High Energy Physics

, 2011:11 | Cite as

Pulling the straps of polygons

  • Davide Gaiotto
  • Juan Maldacena
  • Amit Sever
  • Pedro Vieira
Article

Abstract

Using the Operator Product Expansion for Wilson loops we derive a simple formula giving the discontinuities of the two loop result in terms of the one loop answer. We also argue that the knowledge of these discontinuities should be enough to fix the full two loop answer, for a general number of sides. We work this out explicitly for the case of the hexagon and rederive the known result.

Keywords

Supersymmetric gauge theory Integrable Field Theories AdS-CFT Correspondence 

References

  1. [1]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    G. Korchemsky, J. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    L. Mason and D. Skinner, The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping Null Polygon Wilson Loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    P. Heslop and V.V. Khoze, Analytic Results for MHV Wilson Loops, JHEP 11 (2010) 035 [arXiv:1007.1805] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    C. Anastasiou et al., Two-Loop Polygon Wilson Loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    B. Basso, Exciting the GKP string at any coupling, arXiv:1010.5237 [INSPIRE].
  14. [14]
    A.B. Goncharov, private communication.Google Scholar
  15. [15]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [INSPIRE].
  17. [17]
    J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop integrals, JHEP 04 (2011) 083 [arXiv:1010.3679] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    V. Del Duca, C. Duhr and V.A. Smirnov, A Two-Loop Octagon Wilson Loop in N = 4 SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Davide Gaiotto
    • 1
  • Juan Maldacena
    • 1
  • Amit Sever
    • 2
  • Pedro Vieira
    • 2
  1. 1.School of Natural Sciences, Institute for Advanced StudyPrincetonUSA
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations