Journal of High Energy Physics

, 2010:50 | Cite as

Photon radiation with MadDipole



We present the automation of a subtraction method for photon radiation using the dipole formalism within the MadGraph framework. The subtraction terms are implemented both in dimensional regularization and mass regularization for massless and massive cases and non-collinear-safe observables are accounted for.


Electromagnetic Processes and Properties Standard Model 


  1. [1]
    SM and NLO Multileg Working Group collaboration, J.R. Andersen et al., The SM and NLO multileg working group: Summary report, arXiv:1003.1241 [SPIRES].
  2. [2]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    S. Höeche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [SPIRES].ADSGoogle Scholar
  5. [5]
    S. Dittmaier and M. Krämer, 1, Electroweak radiative corrections to W-boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [SPIRES].ADSGoogle Scholar
  6. [6]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the charged current Drell-Yan process, JHEP 12 (2006) 016 [hep-ph/0609170] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    E. Accomando, A. Denner and C. Meier, Electroweak corrections to Wγ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [SPIRES].ADSGoogle Scholar
  9. [9]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [SPIRES].ADSGoogle Scholar
  10. [10]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays H → WW/ZZ → 4 fermions, JHEP 02 (2007) 080 [hep-ph/0611234] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    M.L. Ciccolini, S. Dittmaier and M. Kramer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [SPIRES].ADSGoogle Scholar
  12. [12]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [SPIRES].ADSGoogle Scholar
  13. [13]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to the Higgs-boson decay H → γγ, Nucl. Phys. B 724 (2005) 183 [hep-ph/0504137] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    J.H. Kühn, A. Scharf and P. Uwer, Electroweak effects in top-quark pair production at hadron colliders, Eur. Phys. J. C 51 (2007) 37 [hep-ph/0610335] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    W. Bernreuther, M. Fücker and Z.-G. Si, Weak interaction corrections to hadronic top quark pair production: contributions from quark-gluon and \( b\bar{b} \) induced reactions, Phys. Rev. D 78 (2008) 017503 [arXiv:0804.1237] [SPIRES].ADSGoogle Scholar
  16. [16]
    M. Beccaria, G. Macorini, F.M. Renard and C. Verzegnassi, Associated tW production at LHC: A complete calculation of electroweak supersymmetric effects at one loop, Phys. Rev. D 73 (2006) 093001 [hep-ph/0601175] [SPIRES].ADSGoogle Scholar
  17. [17]
    W. Hollik, M. Kollar and M.K. Trenkel, Hadronic production of top-squark pairs with electroweak NLO contributions, JHEP 02 (2008) 018 [arXiv:0712.0287] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    W. Hollik, E. Mirabella and M.K. Trenkel, Electroweak contributions to squark-gluino production at the LHC, JHEP 02 (2009) 002 [arXiv:0810.1044] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    J. Germer, W. Hollik, E. Mirabella and M.K. Trenkel, Hadronic production of squark-squark pairs: The electroweak contributions, JHEP 08 (2010) 023 [arXiv:1004.2621] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    E.W.N. Glover and A.G. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C 62 (1994) 311 [SPIRES].ADSGoogle Scholar
  21. [21]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    G. Somogyi, Subtraction with hadronic initial states: an NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    D.A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [SPIRES].ADSGoogle Scholar
  27. [27]
    J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron positron annihilation, Eur. Phys. J. C 9 (1999) 245 [hep-ph/9809429] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna Subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].ADSGoogle Scholar
  34. [34]
    W.T. Giele and G. Zanderighi, On the Numerical Evaluation of One-Loop Amplitudes: The Gluonic Case, JHEP 06 (2008) 038 [arXiv:0805.2152] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [SPIRES].CrossRefMATHADSGoogle Scholar
  36. [36]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    CompHEP collaboration, E. Boos et al., CompHEP 4.4: Automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [SPIRES].ADSGoogle Scholar
  43. [43]
    A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
  44. [44]
    T. Gleisberg et al., SHERPA 1.α, a proof-of-concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].CrossRefMATHADSGoogle Scholar
  46. [46]
    A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
  48. [48]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    M.H. Seymour and C. Tevlin, TeVJet: A general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
  50. [50]
    M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    K. Hasegawa, S. Moch and P. Uwer, AutoDipole: Automated generation of dipole subtraction terms, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    K. Hasegawa, Super AutoDipole, arXiv:1007.1585 [SPIRES].
  53. [53]
    R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP 06 (2010) 086 [arXiv:1004.2905] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    K.P.O. Diener, S. Dittmaier and W. Hollik, Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering, Phys. Rev. D 72 (2005) 093002 [hep-ph/0509084] [SPIRES].ADSGoogle Scholar
  58. [58]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    K. Koller, T.F. Walsh and P.M. Zerwas, Testing QCD: direct photons in e + e collisions, Z. Phys. C 2 (1979) 197 [SPIRES].ADSGoogle Scholar
  60. [60]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [SPIRES].ADSGoogle Scholar
  61. [61]
    ALEPH collaboration, D. Buskulic et al., First measurement of the quark to photon fragmentation function, Z. Phys. C 69 (1996) 365 [SPIRES].Google Scholar
  62. [62]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Radiative Corrections to the Photon + 1 Jet Rate at LEP, Phys. Lett. B 414 (1997) 354 [hep-ph/9705305] [SPIRES].ADSGoogle Scholar
  63. [63]
    A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to hadronic event shapes and jet production in e + e annihilation, Nucl. Phys. B 836 (2010) 37 [arXiv:1003.0986] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, RACOONWW 1.3: A Monte Carlo program for four-fermion production at e + e colliders, Comput. Phys. Commun. 153 (2003) 462 [hep-ph/0209330] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e + e → WW → 4 fermions in double-pole approximation: The RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    A. Denner, S. Dittmaier, M. Roth and M.M. Weber, Electroweak radiative corrections to \( {e^{+} }{e^{-} } \to t\bar{t}H \), Phys. Lett. B 575 (2003) 290 [hep-ph/0307193] [SPIRES].ADSGoogle Scholar
  68. [68]
    A. Denner, S. Dittmaier, M. Roth and M.M. Weber, Radiative corrections to Higgs-boson production in association with top-quark pairs at e + e colliders, Nucl. Phys. B 680 (2004) 85 [hep-ph/0309274] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four-jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [hep-ph/9806317] [SPIRES].ADSGoogle Scholar
  70. [70]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [SPIRES].ADSGoogle Scholar
  71. [71]
    T. Huber and D. Maître, HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [SPIRES].CrossRefMATHADSGoogle Scholar
  72. [72]
    T. Huber and D. Maître, HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [SPIRES].CrossRefMATHADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.

Personalised recommendations