Advertisement

Journal of High Energy Physics

, 2010:48 | Cite as

The Tevatron at the frontier of dark matter direct detection

  • Yang Bai
  • Patrick J. Fox
  • Roni Harnik
Open Access
Article

Abstract

Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. We study these bounds both in the case where there is a contact interaction between DM and the standard model and where there is a mediator kinematically accessible at the Tevatron. We find that in many cases the Tevatron provides the current best limit, particularly for light dark matter, below ∼5 GeV, a and for spin dependent interactions. Non-standard dark matter candidates are also constrained. The introduction of a light mediator significantly weakens the collider bound. A direct detection discovery that is in apparent conflict with mono-jet limits will thus point to a new light state coupling the standard model to the dark sector. Mono-jet searches with more luminosity and including the spectrum shape in the analysis can improve the constraints on DM-nucleon scattering cross section.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

References

  1. [1]
    A. Birkedal, K. Matchev and M. Perelstein, Dark matter at colliders: A model-independent approach, Phys. Rev. D 70 (2004) 077701 [hep-ph/0403004] [SPIRES].ADSGoogle Scholar
  2. [2]
    K. Burkett, E. James, P.-H. Beauchemin, P. Savard, Search for Extra Dimensions in Jets+Missing Energy in RunII, http://www-cdf.fnal.gov/physics/exotic/r2a/20070322.monojet/public/ykk.html.
  3. [3]
    The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    XENON collaboration, J. Angle et al., First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    CoGeNT collaboration, C.E. Aalseth et al., Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, arXiv:1002.4703 [SPIRES].
  8. [8]
    X.-t. Song, Anticharm and charm in the nucleon, Phys. Rev. D 65 (2002) 114022 [hep-ph/0111129] [SPIRES].ADSGoogle Scholar
  9. [9]
    A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
  10. [10]
    F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047 [arXiv:0806.3989] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    A. Bottino, F. Donato, N. Fornengo and S. Scopel, Relic neutralinos and the two dark matter candidate events of the CDMS II experiment, Phys. Rev. D 81 (2010) 107302 [arXiv:0912.4025] [SPIRES].ADSGoogle Scholar
  12. [12]
    E. Kuflik, A. Pierce and K.M. Zurek, Light Neutralinos with Large Scattering Cross Sections in the Minimal Supersymmetric Standard Model, Phys. Rev. D 81 (2010) 111701 [arXiv:1003. 0682] [SPIRES].ADSGoogle Scholar
  13. [13]
    D. Feldman, Z. Liu and P. Nath, Low Mass Neutralino Dark Matter in the MSSM with Constraints from B s → μ + μ and Higgs Search Limits, Phys. Rev. D 81 (2010) 117701 [arXiv:1003.0437] [SPIRES].ADSGoogle Scholar
  14. [14]
    P.W. Graham, R. Harnik, S. Rajendran and P. Saraswat, Exothermic Dark Matter, Phys. Rev. D 82 (2010) 063512 [arXiv:1004.0937] [SPIRES].ADSGoogle Scholar
  15. [15]
    R. Essig, J. Kaplan, P. Schuster and N. Toro, On the Origin of Light Dark Matter Species, arXiv:1004.0691 [SPIRES].
  16. [16]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].ADSGoogle Scholar
  17. [17]
    B. Feldstein, A.L. Fitzpatrick and E. Katz, Form Factor Dark Matter, JCAP 01 (2010) 020 [arXiv:0908.2991] [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Chang, A. Pierce and N. Weiner, Momentum Dependent Dark Matter Scattering, JCAP 01 (2010) 006 [arXiv:0908.3192] [SPIRES].ADSGoogle Scholar
  19. [19]
    Y. Bai and P.J. Fox, Resonant Dark Matter, JHEP 11 (2009) 052 [arXiv:0909.2900] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    H.-Y. Cheng, Low-energy interactions of scalar and pseudoscalar Higgs bosons with baryons, Phys. Lett. B 219 (1989) 347 [SPIRES].ADSGoogle Scholar
  21. [21]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2.1, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].CrossRefMATHADSGoogle Scholar
  22. [22]
    V. Barger, W.-Y. Keung and G. Shaughnessy, Spin Dependence of Dark Matter Scattering, Phys. Rev. D 78 (2008) 056007 [arXiv:0806.1962] [SPIRES].ADSGoogle Scholar
  23. [23]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  24. [24]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [SPIRES].
  25. [25]
    COUPP collaboration, E. Behnke et al., Improved Spin-Dependent WIMP Limits from a Bubble Chamber, Science 319 (2008) 933 [arXiv:0804.2886] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    S. Archambault et al., Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICA SSO, Phys. Lett. B 682 (2009) 185 [arXiv:0907.0307] [SPIRES].ADSGoogle Scholar
  27. [27]
    ZEPLIN-III collaboration, V.N. Lebedenko et al., Limits on the spin-dependent WIMP-nucleon cross-sections from the first science run of the ZEPLIN-III experiment, Phys. Rev. Lett. 103 (2009) 151302 [arXiv:0901.4348] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    S. Chang, G.D. Kribs, D. Tucker-Smith and N. Weiner, Inelastic Dark Matter in Light of DAMA/LIBRA, Phys. Rev. D 79 (2009) 043513 [arXiv:0807.2250] [SPIRES].ADSGoogle Scholar
  29. [29]
    S. Chang, A. Pierce and N. Weiner, Using the Energy Spectrum at DAMA/LIBRA to Probe Light Dark Matter, Phys. Rev. D 79 (2009) 115011 [arXiv:0808.0196] [SPIRES].ADSGoogle Scholar
  30. [30]
    J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [SPIRES].ADSGoogle Scholar
  31. [31]
    R.F. Lang and N. Weiner, Peaked Signals from Dark Matter Velocity Structures in Direct Detection Experiments, JCAP 06 (2010) 032 [arXiv:1003.3664] [SPIRES].ADSGoogle Scholar
  32. [32]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].ADSGoogle Scholar
  34. [34]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    J. Conway, Pretty good simulation of high energy collisions, http://www.physics.ucdavis.edu/∼conway/research/software/pgs/pgs4-general.htm.
  36. [36]
    J. Goodman et al., Constraints on Light Majorana Dark Matter from Colliders, arXiv:1005.1286 [SPIRES].
  37. [37]
    D. Hooper, TASI 2008 Lectures on Dark Matter, arXiv:0901.4090 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Fermi National Accelerator LaboratoryBataviaU.S.A.

Personalised recommendations