Journal of High Energy Physics

, 2010:35 | Cite as

Holographic superconductors and higher curvature corrections



We study a fully backreacted holographic model of a four-dimensional superconductor by including a higher curvature interaction in the bulk action. We study how the critical temperature and the field theory condensate vary in this model and conclude that positive higher curvature couplings make the condensation harder. We also compute the conductivity, finding significant deviations from the conjectured universal frequency gap to critical temperature ratio.


AdS-CFT Correspondence Holographyandcondensedmatterphysics(AdS/CMT) Classical Theories of Gravity Black Holes 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].CrossRefMathSciNetGoogle Scholar
  4. [4]
    S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  5. [5]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].ADSGoogle Scholar
  9. [9]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].ADSGoogle Scholar
  10. [10]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    R.A. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett. B 686 (2010) 199 [arXiv:0909.2138] [SPIRES].ADSMathSciNetGoogle Scholar
  12. [12]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    K. Peeters, J. Powell and M. Zamaklar, Exploring colourful holographic superconductors, JHEP 09 (2009) 101 [arXiv:0907.1508] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D 79 (2009) 126004 [arXiv:0904.1914] [SPIRES].ADSGoogle Scholar
  15. [15]
    E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [SPIRES].ADSGoogle Scholar
  16. [16]
    T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    T. Takahashi and J. Soda, Stability of Lovelock Black Holes under Tensor Perturbations, Phys. Rev. D 79 (2009) 104025 [arXiv:0902.2921] [SPIRES].ADSMathSciNetGoogle Scholar
  19. [19]
    S. Kanno and J. Soda, Stability of Holographic Superconductors, Phys. Rev. D 82 (2010) 086003 [arXiv:1007.5002] [SPIRES].ADSGoogle Scholar
  20. [20]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A.B. Pavan, Holographic Superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [SPIRES].ADSGoogle Scholar
  24. [24]
    Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, Phys. Lett. B 693 (2010) 159 [arXiv:1005.4743] [SPIRES].ADSMathSciNetGoogle Scholar
  25. [25]
    R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic p-wave superconductors from Gauss-Bonnet gravity, Phys. Rev. D 82 (2010) 066007 [arXiv:1007.3321] [SPIRES].ADSGoogle Scholar
  26. [26]
    L. Barclay, R. Gregory, S. Kanno and P. Sutcliffe, Gauss-Bonnet Holographic Superconductors, arXiv:1009.1991 [SPIRES].
  27. [27]
    J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function, Class. Quant. Grav. 27 (2010) 225002 [arXiv:1003.4773] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    A.J. Amsel and D. Gorbonos, The Weak Gravity Conjecture and the Viscosity Bound with Six-Derivative Corrections, JHEP 11 (2010) 033 [arXiv:1005.4718] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [SPIRES].ADSGoogle Scholar
  32. [32]
    A. Sinha, On higher derivative gravity, c-theorems and cosmology, arXiv:1008.4315 [SPIRES].
  33. [33]
    X.-M. Kuang, W.-J. Li and Y. Ling, Holographic Superconductors in Quasi-topological Gravity, arXiv:1008.4066 [SPIRES].
  34. [34]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    M. Siani, in preparation.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano Bicocca and INFN, Sezione di Milano-BicoccaMilanoItaly

Personalised recommendations