Advertisement

The ultraviolet finiteness \( \mathcal{N} = 8 \) supergravity

  • Renata Kallosh
Article

Abstract

We study counterterms (CT’s), candidates for UV divergences in the four-dimensional \( \mathcal{N} = 8 \) supergravity. They have been constructed long ago in the Lorentz covariant on shell superspace and recently in the chiral light-cone (LC) superspace. We prove that all of these CT’s are ruled out since they are not available in the real LC super-space. This implies the perturbative UV finiteness of d =4 \( \mathcal{N} = 8 \) supergravity under the assumption that supersymmetry and continuous E 7(7) symmetry are anomaly-free. The proof, based on the chiral nature of CT’s in the LC superspace, is a generalization of the perturbative F-term non-renormalization theorem for \( \mathcal{N} = 8 \) supergravity.

Keywords

Extended Supersymmetry Models of Quantum Gravity Supergravity Models 

References

  1. [1]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    B. de Wit and H. Nicolai, N =8 supergravity, Nucl. Phys. B 208 (1982) 323 [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    B. de Wit and D.Z. Freedman, On SO(8) extended supergravity, Nucl. Phys. B 130 (1977) 105 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    L. Brink and P.S. Howe, The N =8 supergravity in superspace, Phys. Lett. B 88 (1979) 268 [SPIRES].ADSMathSciNetGoogle Scholar
  5. [5]
    L.J. Dixon, Ultraviolet behavior of N =8 supergravity, arXiv:1005.2703 [SPIRES].
  6. [6]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Progress on ultraviolet finiteness of supergravity, arXiv:0902.3765 [SPIRES].
  7. [7]
    G. Bossard, C. Hillmann and H. Nicolai, Perturbative quantum E 7(7) symmetry in N =8 supergravity, arXiv:1007.5472 [SPIRES].
  8. [8]
    N. Marcus, Composite anomalies in supergravity, Phys. Lett. B 157 (1985) 383 [SPIRES].
  9. [9]
    P. di Vecchia, S. Ferrara and L. Girardello, Anomalies of hidden local chiral symmetries in σ-models and extended supergravities, Phys. Lett. B 151 (1985) 199 [SPIRES].ADSGoogle Scholar
  10. [10]
    L. Alvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    O. Alvarez, I.M. Singer and B. Zumino, Gravitational anomalies and the family’s index theorem, Commun. Math. Phys. 96 (1984) 409 [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  12. [12]
    R. Kallosh, N =8 supergravity on the light cone, Phys. Rev. D 80 (2009) 105022 [arXiv:0903. 4630] [SPIRES].ADSMathSciNetGoogle Scholar
  13. [13]
    P.S. Howe and U. Lindström, Higher order invariants in extended supergravity, Nucl. Phys. B 181 (1981) 487 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    R.E. Kallosh, Counterterms in extended supergravities, Phys. Lett. B 99 (1981) 122 [SPIRES].ADSMathSciNetGoogle Scholar
  15. [15]
    R. Kallosh, On a possibility of a UV finite N =8 supergravity, arXiv:0808.2310 [SPIRES].
  16. [16]
    G. Bossard, P.S. Howe and K.S. Stelle, The ultra-violet question in maximally supersymmetric field theories, Gen. Rel. Grav. 41 (2009) 919 [arXiv:0901.4661] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  17. [17]
    D. Freedman, Superamplitudes and Counterterms for N=8 Supergravity, talk at the 40th international symposium Ahrenshoop on the theory of elementary particles, August 23–27, Berlin, Germany (2010), http://people.physik.hu-berlin.de/~ahoop/freedman.pdf.
  18. [18]
    H. Elvang, E 7(7) and counterterms in N =8 supergravity, talk at the 40th international symposium Ahrenshoop on the theory of elementary particles, August 23–27, Berlin, Germany (2010), http://people.physik.hu-berlin.de/˜ahoop/elvang.pdf.
  19. [19]
    L. Brink, O. Lindgren and B.E.W. Nilsson, N =4 Yang-Mills theory on the light cone, Nucl. Phys. B 212 (1983) 401 [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrarily extended supermultiplets, Nucl. Phys. B 227 (1983) 41 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    S. Ananth, L. Brink and P. Ramond, Eleven-dimensional supergravity in light-cone superspace, JHEP 05 (2005) 003 [hep-th/0501079] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    S. Ananth, L. Brink, R. Heise and H.G. Svendsen, The N =8 supergravity hamiltonian as a quadratic form, Nucl. Phys. B 753 (2006) 195 [hep-th/0607019] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    L. Brink, S.-S. Kim and P. Ramond, E 7(7) on the light cone, JHEP 06 (2008) 034 [arXiv:0801.2993] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    L. Brink, Maximal supersymmetry and exceptional groups, Mod. Phys. Lett. A 25 (2010) 2715 [arXiv:1006.1558] [SPIRES].ADSMathSciNetGoogle Scholar
  25. [25]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Superactions, Nucl. Phys. B 191 (1981) 445 [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    S. Deser, J.H. Kay and K.S. Stelle, Renormalizability properties of supergravity, Phys. Rev. Lett. 38 (1977) 527 [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N =4 model, Nucl. Phys. B 213 (1983) 149 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N =4 Yang-Mills Theory, Phys. Lett. B 123 (1983) 323 [SPIRES].ADSGoogle Scholar
  29. [29]
    A.V. Belitsky, S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Dilatation operator in (super-)Yang-Mills theories on the light-cone, Nucl. Phys. B 708 (2005) 115 [hep-th/0409120] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    J. Broedel and L.J. Dixon, R 4 counterterm and E 7(7) symmetry in maximal supergravity, JHEP 05 (2010) 003 [arXiv:0911.5704] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating tree amplitudes in N =4 SYM and N =8 SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    R. Kallosh and M. Soroush, Explicit action of E 7(7) on N =8 supergravity fields, Nucl. Phys. B 801 (2008) 25 [arXiv:0802.4106] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    R. Kallosh and T. Kugo, The footprint of E 7 in amplitudes of N =8 supergravity, JHEP 01 (2009) 072 [arXiv:0811.3414] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    R. Kallosh, C.H. Lee and T. Rube, N =8 supergravity 4-point amplitudes, JHEP 02 (2009) 050 [arXiv:0811.3417] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    M. Bianchi, S. Ferrara and R. Kallosh, Perturbative and non-perturbative N =8 supergravity, Phys. Lett. B 690 (2010) 328 [arXiv:0910.3674] [SPIRES].ADSMathSciNetGoogle Scholar
  38. [38]
    M. Bianchi, S. Ferrara and R. Kallosh, Observations on arithmetic invariants and U-duality orbits in N =8 supergravity, JHEP 03 (2010) 081 [arXiv:0912.0057] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    M.B. Green, H. Ooguri and J.H. Schwarz, Decoupling supergravity from the superstring, Phys. Rev. Lett. 99 (2007) 041601 [arXiv:0704.0777] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    R. Kallosh and P. Ramond, Light-by-light scattering effect in light-cone supergraphs, arXiv:1006. 4684 [SPIRES].
  41. [41]
    C.-H. Fu and R. Kallosh, New N =4 SY M path integral, arXiv:1005.4171 [SPIRES].
  42. [42]
    B.S. DeWitt, Quantum theory of gravity. II. The manifestly covariant theory, Phys. Rev. 162 (1967) 1195 [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    R.E. Kallosh, The renormalization in nonabelian gauge theories, Nucl. Phys. B 78 (1974) 293 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    P. van Nieuwenhuizen and C.C. Wu, On integral relations for invariants constructed from three Riemann tensors and their applications in quantum gravity, J. Math. Phys. 18 (1977) 182 [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    A.E.M. van de Ven, Two loop quantum gravity, Nucl. Phys. B 378 (1992) 309 [SPIRES].ADSGoogle Scholar
  47. [47]
    M.T. Grisaru, Two loop renormalizability of supergravity, Phys. Lett. B 66 (1977) 75 [SPIRES].ADSGoogle Scholar
  48. [48]
    H. Elvang, D.Z. Freedman and M. Kiermaier, A simple approach to counterterms in N =8 supergravity, JHEP 11 (2010) 016 [arXiv:1003.5018] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Solution to the Ward identities for superamplitudes, JHEP 10 (2010) 103 [arXiv:0911.3169] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    J.M. Drummond, P.J. Heslop and P.S. Howe, A note on N =8 counterterms, arXiv:1008. 4939 [SPIRES].
  51. [51]
    P. Vanhove, T he critical ultraviolet behaviour of N =8 supergravity amplitudes, arXiv:1004. 1392 [SPIRES].
  52. [52]
    J. Bjornsson and M.B. Green, 5 loops in 24/5 dimensions, JHEP 08 (2010) 132 [arXiv:1004.2692] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    E. Sokatchev, A superspace action for N =2 supergravity, Phys. Lett. B 100 (1981) 466 [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations