# Non-Pauli effects from noncommutative spacetimes

- 51 Downloads
- 15 Citations

## Abstract

Noncommutative spacetimes lead to nonlocal quantum field theories (qft’s) where spin-statistics theorems cannot be proved. For this reason, and also backed by detailed arguments, it has been suggested that they get corrected on such spacetimes leading to small violations of the Pauli principle. In a recent paper [1], Pauli-forbidden transitions from spacetime noncommutativity were calculated and confronted with experiments. Here we give details of the computation missing from this paper. The latter was based on a spacetime \( {\mathcal{B}_{\chi \vec{n}}} \) different from the Moyal plane. We argue that it quantizes time in units of *χ*. Energy is then conserved only mod \( \frac{{2\pi }}{\chi } \). Issues related to superselection rules raised by non-Pauli effects are also discussed in a preliminary manner.

## Keywords

Non-Commutative Geometry Space-Time Symmetries## References

- [1]A.P. Balachandran, A. Joseph and P. Padmanabhan,
*Non-Pauli Transitions From Spacetime Noncommutativity*,*Phys. Rev. Lett.***105**(2010) 051601 [arXiv:1003.2250] [SPIRES].CrossRefADSMathSciNetGoogle Scholar - [2]S. Doplicher and J.E. Roberts,
*Why there is a field algebra with a compact gauge group describing the superselection structure in particle p*hysics,*Commun. Math. Phys.***131**(1990) 51 [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar - [3]S. Doplicher, R. Haag and J.E. Roberts,
*Local observables and particle statistics. 2*,*Commun. Math. Phys.***35**(1974) 49 [SPIRES].CrossRefADSMathSciNetGoogle Scholar - [4]S. Doplicher, R. Haag and J.E. Roberts,
*Local observables and particle statistics. 1*,*Commun. Math. Phys.***23**(1971) 199 [SPIRES].CrossRefADSMathSciNetGoogle Scholar - [5]R. Brunetti, K. Fredenhagen and R. Verch,
*The generally covariant locality principle: A new paradigm for local quantum physics*,*Commun. Math. Phys.***237**(2003) 31 [math-ph/0112041] [SPIRES].MATHADSMathSciNetGoogle Scholar - [6]R. Verch,
*A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework*,*Commun. Math. Phys.***223**(2001) 261 [math-ph/0102035] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar - [7]A.P. Balachandran, G. Mangano, A. Pinzul and S. Vaidya,
*Spin and statistics on the Groenwald-Moyal plane: Pauli-forbidden levels and transitions*,*Int. J. Mod. Phys.***A 21**(2006) 3111 [hep-th/0508002] [SPIRES].ADSMathSciNetGoogle Scholar - [8]A.P. Balachandran et al.,
*Statistics and UV-IR mixing with twisted Poincaré invariance*,*Phys. Rev.***D 75**(2007) 045009 [hep-th/0608179] [SPIRES].ADSGoogle Scholar - [9]B. Chakraborty, S. Gangopadhyay, A.G. Hazra and F.G. Scholtz,
*Twisted Galilean symmetry and the Pauli principle at low energies*,*J. Phys.***A 39**(2006) 9557 [hep-th/0601121] [SPIRES].ADSMathSciNetGoogle Scholar - [10]P. Basu, R. Srivastava and S. Vaidya,
*Thermal Correlation Functions of Twisted Quantum Fields*,*Phys. Rev.***D 82**(2010) 025005 [arXiv:1003.4069] [SPIRES].ADSGoogle Scholar - [11]P. Basu, B. Chakraborty and S. Vaidya,
*Fate of the Superconducting Ground State on the Moyal Plane*,*Phys. Lett.***B 690**(2010) 431 [arXiv:0911.4581] [SPIRES].ADSMathSciNetGoogle Scholar - [12]N. Acharyya and S. Vaidya,
*Uniformly Accelerated Observer in Moyal Spacetime*,*JHEP***09**(2010) 045 [arXiv:1005.4666] [SPIRES].CrossRefADSGoogle Scholar - [13]O.W. Greenberg and R.N. Mohapatra,
*Local Quantum Field Theory of Violation of the Pauli Principle*,*Phys. Rev. Lett.***59**(1987) 2507 [SPIRES].CrossRefADSMathSciNetGoogle Scholar - [14]O.W. Greenberg and R.N. Mohapatra,
*Difficulties with a Local Quantum Field Theory of Possible Violation of the Pauli Principle*,*Phys. Rev. Lett.***62**(1989) 712 [SPIRES].CrossRefADSMathSciNetGoogle Scholar - [15]O.W. Greenberg and R.N. Mohapatra,
*Phenomenology of small violations of Fermi and Bose Statistics*,*Phys. Rev.***D 39**(1989) 2032 [SPIRES].ADSGoogle Scholar - [16]O.W. Greenberg,
*Particles with small violations of Fermi or Bose statistics*,*Phys. Rev.***D 43**(1991) 4111 [SPIRES].ADSGoogle Scholar - [17]O.W. Greenberg,
*Theories of violation of statistics*,*AIP Conf. Proc.***545**(2004) 113 [hep-th/0007054] [SPIRES].CrossRefADSGoogle Scholar - [18]L. Randall and R. Sundrum,
*A large mass hierarchy from a small extra dimension*,*Phys. Rev. Lett.***83**(1999) 3370 [hep-ph/9905221] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar - [19]Borexino collaboration, G. Bellini et al.,
*New experimental limits on the Pauli forbidden transitions in*^{12}*C nuclei obtained with 485 days Borexino data*,*Phys. Rev.***C 81**(2010) 034317 [arXiv:0911.0548] [SPIRES].ADSGoogle Scholar - [20]Kamiokande collaboration, Y. Suzuki et al.,
*Study of invisible nucleon decay, N → neutrino neutrino anti-neutrino and a forbidden nuclear transition in the Kamiokande detector*,*Phys. Lett.***B 311**(1993) 357 [SPIRES].ADSGoogle Scholar - [21]A.S. Barabash et al.,
*Search for anomalous carbon atoms — evidence of violation of the Pauli principle during the period of nucleosynthesis*,*JETP Lett.***68**(1998) 112.CrossRefADSGoogle Scholar - [22]R. Arnold et al.,
*Testing the Pauli exclusion principle with the NEMO-2 detector*,*Eur. Phys. J.***A 6**(1999) 361 [SPIRES].ADSGoogle Scholar - [23]E. Ramberg and G.A. Snow,
*A new experimental limit on small violation of the Pauli principle*,*Phys. Lett.***B 238**(1990) 438 [SPIRES].ADSGoogle Scholar - [24]S. Bartalucci et al.,
*New experimental limit on the Pauli exclusion principle violation by electrons*,*Phys. Lett.***B 641**(2006) 18 [SPIRES].ADSGoogle Scholar - [25]V.G. Drinfel’d,
*Almost cocommutative Hopf algebras*,*Leningrad Math. J.***1**(1990) 321.MATHMathSciNetGoogle Scholar - [26]
- [27]M. Chaichian, P.P. Kulish, K. Nishijima and A. Tureanu,
*On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT*,*Phys. Lett.***B 604**(2004) 98 [hep-th/0408069] [SPIRES].ADSMathSciNetGoogle Scholar - [28]M. Chaichian, P. Prešnajder and A. Tureanu,
*New concept of relativistic invariance in NC space-time: Twisted Poincaré symmetry and its implications*,*Phys. Rev. Lett.***94**(2005) 151602 [hep-th/0409096] [SPIRES].CrossRefADSGoogle Scholar - [29]P. Aschieri et al.,
*A gravity theory on noncommutative spaces*,*Class. Quant. Grav.***22**(2005) 3511 [hep-th/0504183] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar - [30]A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern,
*Gauge symmetries and fiber bundles: applications to particle dynamics*, Springer-Verlag, (1983).Google Scholar - [31]A.P. Balachandran, G.Marmo, B.S. Skagerstam and A. Stern,
*Classical Topology and Quantum States*, World Scientific Publishing Co. Pte. Ltd., Singapore, (1991).MATHGoogle Scholar - [32]A.P. Balachandran, T.R. Govindarajan, A.G. Martins and P. Teotonio-Sobrinho,
*Time-space noncommutativity: Quantised evolutions*,*JHEP***11**(2004) 068 [hep-th/0410067] [SPIRES].CrossRefADSGoogle Scholar - [33]A.P. Balachandran, A.G. Martins and P. Teotonio-Sobrinho,
*Discrete time evolution and energy nonconservation in noncommutative physics*,*JHEP***05**(2007) 066 [hep-th/0702076] [SPIRES].CrossRefADSGoogle Scholar - [34]M. Chaichian, A. Demichev and P. Prešnajder,
*Field theory on noncommutative space-time and the deformed Virasoro algebra*, hep-th/0003270 [SPIRES]. - [35]A.M.L. Messiah and O.W. Greenberg,
*Symmetrization Postulate And Its Experimental Foundation*,*Phys. Rev.***136**(1964) B248 [SPIRES].CrossRefADSMathSciNetGoogle Scholar