Non-Pauli effects from noncommutative spacetimes

  • A. P. Balachandran
  • Pramod Padmanabhan


Noncommutative spacetimes lead to nonlocal quantum field theories (qft’s) where spin-statistics theorems cannot be proved. For this reason, and also backed by detailed arguments, it has been suggested that they get corrected on such spacetimes leading to small violations of the Pauli principle. In a recent paper [1], Pauli-forbidden transitions from spacetime noncommutativity were calculated and confronted with experiments. Here we give details of the computation missing from this paper. The latter was based on a spacetime \( {\mathcal{B}_{\chi \vec{n}}} \) different from the Moyal plane. We argue that it quantizes time in units of χ. Energy is then conserved only mod \( \frac{{2\pi }}{\chi } \). Issues related to superselection rules raised by non-Pauli effects are also discussed in a preliminary manner.


Non-Commutative Geometry Space-Time Symmetries 


  1. [1]
    A.P. Balachandran, A. Joseph and P. Padmanabhan, Non-Pauli Transitions From Spacetime Noncommutativity, Phys. Rev. Lett. 105 (2010) 051601 [arXiv:1003.2250] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    S. Doplicher and J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys. 131 (1990) 51 [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  3. [3]
    S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics. 2, Commun. Math. Phys. 35 (1974) 49 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics. 1, Commun. Math. Phys. 23 (1971) 199 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    R. Brunetti, K. Fredenhagen and R. Verch, The generally covariant locality principle: A new paradigm for local quantum physics, Commun. Math. Phys. 237 (2003) 31 [math-ph/0112041] [SPIRES].MATHADSMathSciNetGoogle Scholar
  6. [6]
    R. Verch, A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework, Commun. Math. Phys. 223 (2001) 261 [math-ph/0102035] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  7. [7]
    A.P. Balachandran, G. Mangano, A. Pinzul and S. Vaidya, Spin and statistics on the Groenwald-Moyal plane: Pauli-forbidden levels and transitions, Int. J. Mod. Phys. A 21 (2006) 3111 [hep-th/0508002] [SPIRES].ADSMathSciNetGoogle Scholar
  8. [8]
    A.P. Balachandran et al., Statistics and UV-IR mixing with twisted Poincaré invariance, Phys. Rev. D 75 (2007) 045009 [hep-th/0608179] [SPIRES].ADSGoogle Scholar
  9. [9]
    B. Chakraborty, S. Gangopadhyay, A.G. Hazra and F.G. Scholtz, Twisted Galilean symmetry and the Pauli principle at low energies, J. Phys. A 39 (2006) 9557 [hep-th/0601121] [SPIRES].ADSMathSciNetGoogle Scholar
  10. [10]
    P. Basu, R. Srivastava and S. Vaidya, Thermal Correlation Functions of Twisted Quantum Fields, Phys. Rev. D 82 (2010) 025005 [arXiv:1003.4069] [SPIRES].ADSGoogle Scholar
  11. [11]
    P. Basu, B. Chakraborty and S. Vaidya, Fate of the Superconducting Ground State on the Moyal Plane, Phys. Lett. B 690 (2010) 431 [arXiv:0911.4581] [SPIRES].ADSMathSciNetGoogle Scholar
  12. [12]
    N. Acharyya and S. Vaidya, Uniformly Accelerated Observer in Moyal Spacetime, JHEP 09 (2010) 045 [arXiv:1005.4666] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    O.W. Greenberg and R.N. Mohapatra, Local Quantum Field Theory of Violation of the Pauli Principle, Phys. Rev. Lett. 59 (1987) 2507 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    O.W. Greenberg and R.N. Mohapatra, Difficulties with a Local Quantum Field Theory of Possible Violation of the Pauli Principle, Phys. Rev. Lett. 62 (1989) 712 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    O.W. Greenberg and R.N. Mohapatra, Phenomenology of small violations of Fermi and Bose Statistics, Phys. Rev. D 39 (1989) 2032 [SPIRES].ADSGoogle Scholar
  16. [16]
    O.W. Greenberg, Particles with small violations of Fermi or Bose statistics, Phys. Rev. D 43 (1991) 4111 [SPIRES].ADSGoogle Scholar
  17. [17]
    O.W. Greenberg, Theories of violation of statistics, AIP Conf. Proc. 545 (2004) 113 [hep-th/0007054] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  19. [19]
    Borexino collaboration, G. Bellini et al., New experimental limits on the Pauli forbidden transitions in 12 C nuclei obtained with 485 days Borexino data, Phys. Rev. C 81 (2010) 034317 [arXiv:0911.0548] [SPIRES].ADSGoogle Scholar
  20. [20]
    Kamiokande collaboration, Y. Suzuki et al., Study of invisible nucleon decay, N → neutrino neutrino anti-neutrino and a forbidden nuclear transition in the Kamiokande detector, Phys. Lett. B 311 (1993) 357 [SPIRES].ADSGoogle Scholar
  21. [21]
    A.S. Barabash et al., Search for anomalous carbon atoms — evidence of violation of the Pauli principle during the period of nucleosynthesis, JETP Lett. 68 (1998) 112.CrossRefADSGoogle Scholar
  22. [22]
    R. Arnold et al., Testing the Pauli exclusion principle with the NEMO-2 detector, Eur. Phys. J. A 6 (1999) 361 [SPIRES].ADSGoogle Scholar
  23. [23]
    E. Ramberg and G.A. Snow, A new experimental limit on small violation of the Pauli principle, Phys. Lett. B 238 (1990) 438 [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Bartalucci et al., New experimental limit on the Pauli exclusion principle violation by electrons, Phys. Lett. B 641 (2006) 18 [SPIRES].ADSGoogle Scholar
  25. [25]
    V.G. Drinfel’d, Almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990) 321.MATHMathSciNetGoogle Scholar
  26. [26]
    V.G. Drinfel’d, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990) 1419.MATHMathSciNetGoogle Scholar
  27. [27]
    M. Chaichian, P.P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B 604 (2004) 98 [hep-th/0408069] [SPIRES].ADSMathSciNetGoogle Scholar
  28. [28]
    M. Chaichian, P. Prešnajder and A. Tureanu, New concept of relativistic invariance in NC space-time: Twisted Poincaré symmetry and its implications, Phys. Rev. Lett. 94 (2005) 151602 [hep-th/0409096] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    P. Aschieri et al., A gravity theory on noncommutative spaces, Class. Quant. Grav. 22 (2005) 3511 [hep-th/0504183] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  30. [30]
    A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern, Gauge symmetries and fiber bundles: applications to particle dynamics, Springer-Verlag, (1983).Google Scholar
  31. [31]
    A.P. Balachandran, G.Marmo, B.S. Skagerstam and A. Stern, Classical Topology and Quantum States, World Scientific Publishing Co. Pte. Ltd., Singapore, (1991).MATHGoogle Scholar
  32. [32]
    A.P. Balachandran, T.R. Govindarajan, A.G. Martins and P. Teotonio-Sobrinho, Time-space noncommutativity: Quantised evolutions, JHEP 11 (2004) 068 [hep-th/0410067] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    A.P. Balachandran, A.G. Martins and P. Teotonio-Sobrinho, Discrete time evolution and energy nonconservation in noncommutative physics, JHEP 05 (2007) 066 [hep-th/0702076] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    M. Chaichian, A. Demichev and P. Prešnajder, Field theory on noncommutative space-time and the deformed Virasoro algebra, hep-th/0003270 [SPIRES].
  35. [35]
    A.M.L. Messiah and O.W. Greenberg, Symmetrization Postulate And Its Experimental Foundation, Phys. Rev. 136 (1964) B248 [SPIRES].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsSyracuse UniversitySyracuseU.S.A.
  2. 2.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations