Skip to main content
Log in

Correlation functions in the holographic replica method

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Disorder has long been a difficult subject in condensed matter systems and the The replica method is a well-known tool in this field. Implementing the replica method the AdS/CFT correspondence has been proposed and discussed in literatures. We point out, for any CFT that has a holographic dual and to the leading order of the large-N expansion, the corrections due to the presence of random disorder to any connected correlation functions vanish identically, provided that the disorder strength is normalized as discussed in literatures and that the symmetry among replicas is unbroken. Same must hold true to any observables that are determined by the connected correlation functions through a linear relation. This behavior resembles strongly that of a free theory where disorder is coupled to the fundamental field. We demonstrate this by both the means of holographic principle and field theory analysis in a toy model. We also propose ways of evaluating the non-zero sub-leading effects perturbatively in terms of the disorder strength and discuss a novel possibility of defining a new holographic dual if we adopt a different normalization for the disorder strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zee, Quantum Field Theory in a Nutshell, 2nd ed., Princeton University Press, Princeton, U.S.A. (2003).

    MATH  Google Scholar 

  2. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113 ] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  5. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  7. S. Sachdev, Condensed Matter and AdS/CFT, arXiv:1002.2947 [INSPIRE].

  8. A. Bayntun, C. Burgess, B.P. Dolan and S.-S. Lee, AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments, New J. Phys. 13 (2011) 035012 [arXiv:1008.1917] [INSPIRE].

    Article  ADS  Google Scholar 

  9. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  10. M. Fujita, Y. Hikida, S. Ryu and T. Takayanagi, Disordered Systems and the Replica Method in AdS/CFT, JHEP 12 (2008) 065 [arXiv:0810.5394] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. L.-Y. Hung and Y. Shang, On 1-loop diagrams in AdS space, Phys. Rev. D 83 (2011) 024029 [arXiv:1007.2653] [INSPIRE].

    ADS  Google Scholar 

  12. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].

    ADS  Google Scholar 

  15. K. Binder and A. Young, Spin glasses: Experimental facts, theoretical concepts and open questions, Rev. Mod. Phys. 58 (1986) 801 [INSPIRE].

    Article  ADS  Google Scholar 

  16. S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. O. Aharony, M. Berkooz and E. Silverstein, Multiple trace operators and nonlocal string theories, JHEP 08 (2001) 006 [hep-th/0105309] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Berkooz, A. Sever and A. Shomer, ’Double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Sever and A. Shomer, A Note on multitrace deformations and AdS/CFT, JHEP 07 (2002) 027 [hep-th/0203168] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. O. Aharony, M. Berkooz and B. Katz, Non-local effects of multi-trace deformations in the AdS/CFT correspondence, JHEP 10 (2005) 097 [hep-th/0504177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Elitzur, A. Giveon, M. Porrati and E. Rabinovici, Multitrace deformations of vector and adjoint theories and their holographic duals, JHEP 02 (2006) 006 [hep-th/0511061] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008)195014 [arXiv:0805.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Vecchi, The Conformal Window of deformed CFTs in the planar limit, Phys. Rev. D 82 (2010) 045013 [arXiv:1004.2063] [INSPIRE].

    ADS  Google Scholar 

  26. T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. I. Arefeva, Reduced large-N models as amorphous systems, Phys. Lett. B 124 (1983) 221 [INSPIRE].

    ADS  Google Scholar 

  29. I.Y. Arefeva, Quantum field theory models with a large number of colors and the statistical physics of disordered systems, Theor. Math. Phys. 54 (1983) 97 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  30. J.M. Maldacena, TASI 2003 lectures on AdS/CFT, hep-th/0309246 [INSPIRE].

  31. J. Cardy, The Stress Tensor in Quenched Random Systems, cond-mat/0111031 (2001).

  32. E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. C. Herzog and D. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].

    Article  ADS  Google Scholar 

  36. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwen Shang.

Additional information

ArXiv ePrint: 1210.2404

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Y. Correlation functions in the holographic replica method. J. High Energ. Phys. 2012, 120 (2012). https://doi.org/10.1007/JHEP12(2012)120

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)120

Keywords

Navigation