Skip to main content
Log in

Dark Matter and enhanced h → γγ rate from vector-like Leptons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper, we study an extension of the standard model with a vector-like generation of leptons. This model provides a viable dark matter candidate and a possibility to enhance the Higgs decay rate into a pair of photons. We evaluate constraints from electroweak precision tests and from vacuum stability, and find that the latter provide an upper limit on the lepton Yukawa couplings. A large enhancement of the Higgs di-photon rate can therefore only be obtained when the mass of the lightest charged lepton is close to the LEP limit. The relic density constraint suggests a co-annihilation scenario with a small mass difference between the lightest charged and neutral leptons, which also weakens the LEP limit on the lightest charged lepton mass and allows for larger Higgs di-photon decay rates. Cross sections for direct detection of the dark matter candidate are calculated, and prospects for detecting the new particles at the LHC are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).

  2. J. Incandela, Stauts of the CMS SM Higgs search, talk given at the seminar Latest update in the search for the Higgs boson, CERN, Geneva, 4 July 2012 [http://indico.cern.ch/conferenceDisplay.py?confId=197461].

  3. ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012)111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  4. CMS collaboration, Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  5. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).

  6. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, HIG-12-015.

  7. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  8. I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  9. J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, arXiv:1207.1717 [INSPIRE].

  11. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].

    Article  ADS  Google Scholar 

  13. H.-S. Lee and A. Soni, Fourth Generation Parity, arXiv:1206.6110 [INSPIRE].

  14. K. Ishiwata and M.B. Wise, Higgs Properties and Fourth Generation Leptons, Phys. Rev. D 84 (2011) 055025 [arXiv:1107.1490] [INSPIRE].

    ADS  Google Scholar 

  15. J.M. Arnold, P. Fileviez Perez, B. Fornal and S. Spinner, On Higgs Decays, Baryon Number Violation and SUSY at the LHC, Phys. Rev. D 85 (2012) 115024 [arXiv:1204.4458] [INSPIRE].

    ADS  Google Scholar 

  16. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  17. O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [INSPIRE].

    ADS  Google Scholar 

  18. G. Cynolter and E. Lendvai, Electroweak Precision Constraints on Vector-like Fermions, Eur. Phys. J. C 58 (2008) 463 [arXiv:0804.4080] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  20. Particle Data Group collaboration, C. Amsler et al., Review of Particle Physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

    ADS  Google Scholar 

  21. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  23. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  24. A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].

    ADS  Google Scholar 

  25. M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stal, G. Weiglein and L. Zeune, Confronting the MSSM and the NMSSM with the Discovery of a Signal in the two Photon Channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].

    ADS  Google Scholar 

  30. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs Boson, Enhanced Di-photon Rate and Gauged U(1)P Q -Extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].

    ADS  Google Scholar 

  31. M.R. Buckley and D. Hooper, Are There Hints of Light Stops in Recent Higgs Search Results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].

    ADS  Google Scholar 

  32. A. Akeroyd and S. Moretti, Enhancement of H → γγ from doubly charged scalars in the Higgs Triplet Model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  33. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs Portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II Seesaw Model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Arhrib, R. Benbrik and N. Gaur, H → γγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  36. L. Wang and X.-F. Han, LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model, JHEP 05 (2012) 088 [arXiv:1203.4477] [INSPIRE].

    Article  ADS  Google Scholar 

  37. W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on New Scalars from the LHC 125 GeV Higgs Signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].

    ADS  Google Scholar 

  38. C.-W. Chiang and K. Yagyu, Higgs boson decays to γγ and Zγ in models with Higgs extensions, arXiv:1207.1065 [INSPIRE].

  39. F. Goertz, U. Haisch and M. Neubert, Bounds on Warped Extra Dimensions from a Standard Model-like Higgs Boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].

    ADS  Google Scholar 

  40. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    ADS  Google Scholar 

  41. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].

    ADS  Google Scholar 

  43. V. Barger, M. Ishida and W.-Y. Keung, Flavor-Tuned 125 GeV SUSY Higgs Boson at the LHC: MSSM and NATURAL SUSY TESTS, arXiv:1207.0779 [INSPIRE].

  44. J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγ→ℓℓγ channel, Phys. Rev. D 86 (2012) 033010 [arXiv:1112.1405][INSPIRE].

    ADS  Google Scholar 

  45. M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Lindner, Implications of Triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].

    ADS  Google Scholar 

  47. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  48. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori and A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  50. W.-Y. Keung and P. Schwaller, Long Lived Fourth Generation and the Higgs, JHEP 06 (2011) 054 [arXiv:1103.3765] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Angle et al., Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. 101 (2008) 091301 [arXiv:0805.2939] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Heikinheimo, K. Tuominen and J. Virkajarvi, Invisible Higgs and Dark Matter, JHEP 07 (2012) 117 [arXiv:1203.5766] [INSPIRE].

    Article  ADS  Google Scholar 

  53. Y.S. Jeong, C. Kim and M.H. Reno, Majorana Dark Matter Cross sections with Nucleons at High Energies, Phys. Rev. D 86 (2012) 094025 [arXiv:1207.1526] [INSPIRE].

    ADS  Google Scholar 

  54. G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati and A. Semenov, Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].

    Article  ADS  Google Scholar 

  56. I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].

    ADS  Google Scholar 

  57. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  58. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  59. COUPP collaboration, E. Behnke et al., First Dark Matter Search Results from a 4-kg CF 3 I Bubble Chamber Operated in a Deep Underground Site, Phys. Rev. D 86 (2012) 052001 [arXiv:1204.3094] [INSPIRE].

    ADS  Google Scholar 

  60. CMS collaboration, Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy, Phys. Rev. Lett. 108 (2012) 261803 [arXiv:1204.0821] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  62. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for Naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].

  63. R. Dermisek, Insensitive Unification of Gauge Couplings, Phys. Lett. B 713 (2012) 469 [arXiv:1204.6533] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Schwaller.

Additional information

ArXiv ePrint: 1207.4235

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joglekar, A., Schwaller, P. & Wagner, C.E.M. Dark Matter and enhanced h → γγ rate from vector-like Leptons. J. High Energ. Phys. 2012, 64 (2012). https://doi.org/10.1007/JHEP12(2012)064

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)064

Keywords

Navigation