Skip to main content
Log in

Flavour physics in the soft wall model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We extend the description of flavour that exists in the Randall-Sundrum (RS) model to the soft wall (SW) model in which the IR brane is removed and the Higgs is free to propagate in the bulk. It is demonstrated that, like the RS model, one can generate the hierarchy of fermion masses by localising the fermions at different locations throughout the space. However, there are two significant differences. Firstly the possible fermion masses scale down, from the electroweak scale, less steeply than in the RS model and secondly there now exists a minimum fermion mass for fermions sitting towards the UV brane. With a quadratic Higgs VEV, this minimum mass is about fifteen orders of magnitude lower than the electroweak scale. We derive the gauge propagator and despite the KK masses scaling as \( m_n^2 \sim n \), it is demonstrated that the coefficients of four fermion operators are not divergent at tree level. FCNC’s amongst kaons and leptons are considered and compared to calculations in the RS model, with a brane localised Higgs and equivalent levels of tuning. It is found that since the gauge fermion couplings are slightly more universal and the SM fermions typically sit slightly further towards the UV brane, the contributions to observables such as ε K and Δm K , from the exchange of KK gauge fields, are significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

    ADS  Google Scholar 

  2. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].

    MATH  ADS  MathSciNet  Google Scholar 

  3. E. Schreiber, Excited mesons and quantization of string endpoints, hep-th/0403226 [INSPIRE].

  4. M. Shifman, Highly excited hadrons in QCD and beyond, hep-ph/0507246 [INSPIRE].

  5. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. A. Falkowski and M. Pérez-Victoria, Electroweak breaking on a soft wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [INSPIRE].

    Article  ADS  Google Scholar 

  7. B. Batell, T. Gherghetta and D. Sword, The soft-wall standard model, Phys. Rev. D 78 (2008) 116011 [arXiv:0808.3977] [INSPIRE].

    ADS  Google Scholar 

  8. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

    ADS  Google Scholar 

  12. S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

    ADS  Google Scholar 

  14. C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].

    Article  ADS  Google Scholar 

  17. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [INSPIRE].

    Article  Google Scholar 

  20. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  22. S. Aybat and D.P. George, Stability of scalar fields in warped extra dimensions, JHEP 09 (2010) 010 [arXiv:1006.2827] [INSPIRE].

    Article  Google Scholar 

  23. D.P. George and M. Postma, Avoiding the dangers of a soft-wall singularity, arXiv:1105.3390 [INSPIRE].

  24. J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-wall stabilization, New J. Phys. 12 (2010) 075012 [arXiv:0907.5361] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Gherghetta and N. Setzer, On the stability of a soft-wall model, Phys. Rev. D 82 (2010) 075009 [arXiv:1008.1632] [INSPIRE].

    ADS  Google Scholar 

  26. J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing electroweak precision observables in 5D warped models, JHEP 05 (2011) 083 [arXiv:1103.1388] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.A. Cabrer, G. von Gersdorff and M. Quirós, Warped electroweak breaking without custodial symmetry, Phys. Lett. B 697 (2011) 208 [arXiv:1011.2205] [INSPIRE].

    ADS  Google Scholar 

  28. A. Carmona, E. Ponton and J. Santiago, Phenomenology of non-custodial warped models, arXiv:1107.1500 [INSPIRE].

  29. A. Delgado and D. Diego, Fermion mass hierarchy from the soft wall, Phys. Rev. D 80 (2009) 024030 [arXiv:0905.1095] [INSPIRE].

    ADS  Google Scholar 

  30. T. Gherghetta and D. Sword, Fermion flavor in soft-wall AdS, Phys. Rev. D 80 (2009) 065015 [arXiv:0907.3523] [INSPIRE].

    ADS  Google Scholar 

  31. S. Mert Aybat and J. Santiago, Bulk fermions in warped models with a soft wall, Phys. Rev. D 80 (2009) 035005 [arXiv:0905.3032] [INSPIRE].

    ADS  Google Scholar 

  32. M. Atkins and S.J. Huber, Suppressing lepton flavour violation in a soft-wall extra dimension, Phys. Rev. D 82 (2010) 056007 [arXiv:1002.5044] [INSPIRE].

    ADS  Google Scholar 

  33. A.D. Medina and E. Ponton, Warped universal extra dimensions, JHEP 06 (2011) 009 [arXiv:1012.5298] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [INSPIRE].

    ADS  Google Scholar 

  35. K. Agashe, A.E. Blechman and F. Petriello, Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation, Phys. Rev. D 74 (2006) 053011 [hep-ph/0606021] [INSPIRE].

    ADS  Google Scholar 

  36. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Aybat and J. Santiago, Bulk fermions in soft wall models, AIP Conf. Proc. 1200 (2010) 611 [arXiv:0909.3999] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K. Agashe, T. Okui and R. Sundrum, A common origin for neutrino anarchy and charged hierarchies, Phys. Rev. Lett. 102 (2009) 101801 [arXiv:0810.1277] [INSPIRE].

    Article  ADS  Google Scholar 

  39. L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS 5 , JHEP 11 (2001) 003 [hep-th/0108114] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas graphs and mathematical tables, ninth Dover printing, tenth GPO printing edition, Dover, New York U.S.A. (1964).

  41. L.J. Slater, Confluent hypergeometric functions, Cambridge University Press, Cambridge U.K. (1960).

    MATH  Google Scholar 

  42. H. Buchholz, The confluent hypergeometric function, Springer, Heidelberg Germany (1969).

    MATH  Google Scholar 

  43. I. Gradshteyn and I. Ryzhik, Table of integrals, series and products, seventh edition, Elsevier, New York U.S.A. (2007).

    MATH  Google Scholar 

  44. P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z boson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE].

    ADS  Google Scholar 

  45. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  46. K. Hayasaka et al., Search for lepton flavor violating τ decays into three leptons with 719 million produced τ +τ pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].

    ADS  Google Scholar 

  47. O. Gedalia, G. Isidori and G. Perez, Combining direct & indirect kaon CP-violation to constrain the warped KK scale, Phys. Lett. B 682 (2009) 200 [arXiv:0905.3264] [INSPIRE]

    ADS  Google Scholar 

  48. W.-F. Chang, J.N. Ng and J.M. Wu, Flavour changing neutral current constraints from Kaluza-Klein gluons and quark mass matrices in RS1, Phys. Rev. D 79 (2009) 056007 [arXiv:0809.1390] [INSPIRE].

    ADS  Google Scholar 

  49. J.A. Bagger, K.T. Matchev and R.-J. Zhang, QCD corrections to flavor changing neutral currents in the supersymmetric standard model, Phys. Lett. B 412 (1997) 77 [hep-ph/9707225] [INSPIRE].

    ADS  Google Scholar 

  50. UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators -and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].

    ADS  Google Scholar 

  52. A.J. Buras and D. Guadagnoli, On the consistency between the observed amount of CP-violation in the K and B d -systems within minimal flavor violation, Phys. Rev. D 79 (2009) 053010 [arXiv:0901.2056] [INSPIRE].

    ADS  Google Scholar 

  53. E. Lunghi and A. Soni, Possible indications of new physics in B d -mixing and in sin(2β) determinations, Phys. Lett. B 666 (2008) 162 [arXiv:0803.4340] [INSPIRE].

    ADS  Google Scholar 

  54. A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Babich et al., \( {K^0} - {\overline {\text{K}}^0} \) mixing beyond the standard model and CP-violating electroweak penguins in quenched QCD with exact chiral symmetry, Phys. Rev. D 74 (2006) 073009 [hep-lat/0605016] [INSPIRE].

    ADS  Google Scholar 

  56. R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE]

    Article  ADS  Google Scholar 

  57. A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNC’s in warped extra dimensions,Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].

    ADS  Google Scholar 

  58. K. Agashe and R. Contino, Composite Higgs-mediated FCNC, Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542] [INSPIRE].

    ADS  Google Scholar 

  59. A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Archer.

Additional information

ArXiv EPrint: 1108.1433

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, P.R., Huber, S.J. & Jäger, S. Flavour physics in the soft wall model. J. High Energ. Phys. 2011, 101 (2011). https://doi.org/10.1007/JHEP12(2011)101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)101

Keywords

Navigation