Skip to main content
Log in

Non-Pauli effects from noncommutative spacetimes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Noncommutative spacetimes lead to nonlocal quantum field theories (qft’s) where spin-statistics theorems cannot be proved. For this reason, and also backed by detailed arguments, it has been suggested that they get corrected on such spacetimes leading to small violations of the Pauli principle. In a recent paper [1], Pauli-forbidden transitions from spacetime noncommutativity were calculated and confronted with experiments. Here we give details of the computation missing from this paper. The latter was based on a spacetime \( {\mathcal{B}_{\chi \vec{n}}} \) different from the Moyal plane. We argue that it quantizes time in units of χ. Energy is then conserved only mod \( \frac{{2\pi }}{\chi } \). Issues related to superselection rules raised by non-Pauli effects are also discussed in a preliminary manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Balachandran, A. Joseph and P. Padmanabhan, Non-Pauli Transitions From Spacetime Noncommutativity, Phys. Rev. Lett. 105 (2010) 051601 [arXiv:1003.2250] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Doplicher and J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys. 131 (1990) 51 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics. 2, Commun. Math. Phys. 35 (1974) 49 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics. 1, Commun. Math. Phys. 23 (1971) 199 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Brunetti, K. Fredenhagen and R. Verch, The generally covariant locality principle: A new paradigm for local quantum physics, Commun. Math. Phys. 237 (2003) 31 [math-ph/0112041] [SPIRES].

    MATH  ADS  MathSciNet  Google Scholar 

  6. R. Verch, A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework, Commun. Math. Phys. 223 (2001) 261 [math-ph/0102035] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. A.P. Balachandran, G. Mangano, A. Pinzul and S. Vaidya, Spin and statistics on the Groenwald-Moyal plane: Pauli-forbidden levels and transitions, Int. J. Mod. Phys. A 21 (2006) 3111 [hep-th/0508002] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  8. A.P. Balachandran et al., Statistics and UV-IR mixing with twisted Poincaré invariance, Phys. Rev. D 75 (2007) 045009 [hep-th/0608179] [SPIRES].

    ADS  Google Scholar 

  9. B. Chakraborty, S. Gangopadhyay, A.G. Hazra and F.G. Scholtz, Twisted Galilean symmetry and the Pauli principle at low energies, J. Phys. A 39 (2006) 9557 [hep-th/0601121] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  10. P. Basu, R. Srivastava and S. Vaidya, Thermal Correlation Functions of Twisted Quantum Fields, Phys. Rev. D 82 (2010) 025005 [arXiv:1003.4069] [SPIRES].

    ADS  Google Scholar 

  11. P. Basu, B. Chakraborty and S. Vaidya, Fate of the Superconducting Ground State on the Moyal Plane, Phys. Lett. B 690 (2010) 431 [arXiv:0911.4581] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  12. N. Acharyya and S. Vaidya, Uniformly Accelerated Observer in Moyal Spacetime, JHEP 09 (2010) 045 [arXiv:1005.4666] [SPIRES].

    Article  ADS  Google Scholar 

  13. O.W. Greenberg and R.N. Mohapatra, Local Quantum Field Theory of Violation of the Pauli Principle, Phys. Rev. Lett. 59 (1987) 2507 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. O.W. Greenberg and R.N. Mohapatra, Difficulties with a Local Quantum Field Theory of Possible Violation of the Pauli Principle, Phys. Rev. Lett. 62 (1989) 712 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. O.W. Greenberg and R.N. Mohapatra, Phenomenology of small violations of Fermi and Bose Statistics, Phys. Rev. D 39 (1989) 2032 [SPIRES].

    ADS  Google Scholar 

  16. O.W. Greenberg, Particles with small violations of Fermi or Bose statistics, Phys. Rev. D 43 (1991) 4111 [SPIRES].

    ADS  Google Scholar 

  17. O.W. Greenberg, Theories of violation of statistics, AIP Conf. Proc. 545 (2004) 113 [hep-th/0007054] [SPIRES].

    Article  ADS  Google Scholar 

  18. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Borexino collaboration, G. Bellini et al., New experimental limits on the Pauli forbidden transitions in 12 C nuclei obtained with 485 days Borexino data, Phys. Rev. C 81 (2010) 034317 [arXiv:0911.0548] [SPIRES].

    ADS  Google Scholar 

  20. Kamiokande collaboration, Y. Suzuki et al., Study of invisible nucleon decay, N → neutrino neutrino anti-neutrino and a forbidden nuclear transition in the Kamiokande detector, Phys. Lett. B 311 (1993) 357 [SPIRES].

    ADS  Google Scholar 

  21. A.S. Barabash et al., Search for anomalous carbon atoms — evidence of violation of the Pauli principle during the period of nucleosynthesis, JETP Lett. 68 (1998) 112.

    Article  ADS  Google Scholar 

  22. R. Arnold et al., Testing the Pauli exclusion principle with the NEMO-2 detector, Eur. Phys. J. A 6 (1999) 361 [SPIRES].

    ADS  Google Scholar 

  23. E. Ramberg and G.A. Snow, A new experimental limit on small violation of the Pauli principle, Phys. Lett. B 238 (1990) 438 [SPIRES].

    ADS  Google Scholar 

  24. S. Bartalucci et al., New experimental limit on the Pauli exclusion principle violation by electrons, Phys. Lett. B 641 (2006) 18 [SPIRES].

    ADS  Google Scholar 

  25. V.G. Drinfel’d, Almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990) 321.

    MATH  MathSciNet  Google Scholar 

  26. V.G. Drinfel’d, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990) 1419.

    MATH  MathSciNet  Google Scholar 

  27. M. Chaichian, P.P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B 604 (2004) 98 [hep-th/0408069] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  28. M. Chaichian, P. Prešnajder and A. Tureanu, New concept of relativistic invariance in NC space-time: Twisted Poincaré symmetry and its implications, Phys. Rev. Lett. 94 (2005) 151602 [hep-th/0409096] [SPIRES].

    Article  ADS  Google Scholar 

  29. P. Aschieri et al., A gravity theory on noncommutative spaces, Class. Quant. Grav. 22 (2005) 3511 [hep-th/0504183] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern, Gauge symmetries and fiber bundles: applications to particle dynamics, Springer-Verlag, (1983).

  31. A.P. Balachandran, G.Marmo, B.S. Skagerstam and A. Stern, Classical Topology and Quantum States, World Scientific Publishing Co. Pte. Ltd., Singapore, (1991).

    MATH  Google Scholar 

  32. A.P. Balachandran, T.R. Govindarajan, A.G. Martins and P. Teotonio-Sobrinho, Time-space noncommutativity: Quantised evolutions, JHEP 11 (2004) 068 [hep-th/0410067] [SPIRES].

    Article  ADS  Google Scholar 

  33. A.P. Balachandran, A.G. Martins and P. Teotonio-Sobrinho, Discrete time evolution and energy nonconservation in noncommutative physics, JHEP 05 (2007) 066 [hep-th/0702076] [SPIRES].

    Article  ADS  Google Scholar 

  34. M. Chaichian, A. Demichev and P. Prešnajder, Field theory on noncommutative space-time and the deformed Virasoro algebra, hep-th/0003270 [SPIRES].

  35. A.M.L. Messiah and O.W. Greenberg, Symmetrization Postulate And Its Experimental Foundation, Phys. Rev. 136 (1964) B248 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Padmanabhan.

Additional information

ArXiv ePrint: hep-th/1006.1185v1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, A.P., Padmanabhan, P. Non-Pauli effects from noncommutative spacetimes. J. High Energ. Phys. 2010, 1 (2010). https://doi.org/10.1007/JHEP12(2010)001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)001

Keywords

Navigation