An explicit construction of the dimension-9 operator basis in the standard model effective field theory

Abstract

We investigate systematically dimension-9 operators in the standard model effective field theory which contains only standard model fields and respects its gauge symmetry. With the help of the Hilbert series approach to classifying operators according to their lepton and baryon numbers and their field contents, we construct the basis of operators explicitly. We remove redundant operators by employing various kinematic and algebraic relations including integration by parts, equations of motion, Schouten identities, Dirac matrix and Fierz identities, and Bianchi identities. We confirm counting of independent operators by analyzing their flavor symmetry relations. All operators violate lepton or baryon number or both, and are thus non-Hermitian. Including Hermitian conjugated operators there are \( {\left.384\right|}_{\Delta B=0}^{\Delta L=\pm 2}+{\left.10\right|}_{\Delta B=\pm 2}^{\Delta L=0}+{\left.4\right|}_{\Delta B=\pm 1}^{\Delta L=\pm 3}+{\left.236\right|}_{\Delta B=\pm 1}^{\Delta L=\mp 1} \) operators without referring to fermion generations, and \( {\left.44874\right|}_{\Delta B=0}^{\Delta L=\pm 2}+{\left.2862\right|}_{\Delta B=\pm 2}^{\Delta L=0}+{\left.486\right|}_{\Delta B=\pm 1}^{\Delta L=\pm 3}+{\left.42234\right|}_{\Delta B=\mp 1}^{\Delta L=\pm 1} \) operators when three generations of fermions are referred to, where ∆L,B denote the net lepton and baryon numbers of the operators. Our result provides a starting point for consistent phenomenological studies associated with dimension-9 operators.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    L.F. Abbott and M.B. Wise, The Effective Hamiltonian for Nucleon Decay, Phys. Rev. D 22 (1980) 2208 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  MATH  Google Scholar 

  5. [5]

    L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    Y. Liao and X.-D. Ma, Renormalization Group Evolution of Dimension-seven Baryon- and Lepton-number-violating Operators, JHEP 11 (2016) 043 [arXiv:1607.07309] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  7. [7]

    E.E. Jenkins and A.V. Manohar, Algebraic Structure of Lepton and Quark Flavor Invariants and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    A. Hanany, E.E. Jenkins, A.V. Manohar and G. Torri, Hilbert Series for Flavor Invariants of the Standard Model, JHEP 03 (2011) 096 [arXiv:1010.3161] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. [9]

    L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev. D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. [10]

    L. Lehman and A. Martin, Low-derivative operators of the Standard Model effective field theory via Hilbert series methods, JHEP 02 (2016) 081 [arXiv:1510.00372] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. [11]

    B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . .: Higher dimension operators in the SM EFT, JHEP 08 (2017) 016 [Erratum ibid. 09 (2019) 019] [arXiv:1512.03433] [INSPIRE].

  12. [12]

    B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and their partition functions, JHEP 10 (2017) 199 [arXiv:1706.08520] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. [13]

    B. Gripaios and D. Sutherland, DEFT: A program for operators in EFT, JHEP 01 (2019) 128 [arXiv:1807.07546] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. [14]

    J.C. Criado, BasisGen: automatic generation of operator bases, Eur. Phys. J. C 79 (2019) 256 [arXiv:1901.03501] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    R.M. Fonseca, Enumerating the operators of an effective field theory, Phys. Rev. D 101 (2020) 035040 [arXiv:1907.12584] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. [16]

    C.B. Marinissen, R. Rahn and W.J. Waalewijn, . . ., 83106786, 114382724, 1509048322, 2343463290, 27410087742, . . . efficient Hilbert series for effective theories, Phys. Lett. B 808 (2020) 135632 [arXiv:2004.09521] [INSPIRE].

  17. [17]

    U. Banerjee, J. Chakrabortty, S. Prakash and S.U. Rahaman, Characters and group invariant polynomials of (super)fields: road to “Lagrangian”, Eur. Phys. J. C 80 (2020) 938 [arXiv:2004.12830] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete Set of Dimension-8 Operators in the Standard Model Effective Field Theory, arXiv:2005.00008 [INSPIRE].

  19. [19]

    C.W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    A. Aparici, K. Kim, A. Santamaria and J. Wudka, Right-handed neutrino magnetic moments, Phys. Rev. D 80 (2009) 013010 [arXiv:0904.3244] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    F. del Aguila, S. Bar-Shalom, A. Soni and J. Wudka, Heavy Majorana Neutrinos in the Effective Lagrangian Description: Application to Hadron Colliders, Phys. Lett. B 670 (2009) 399 [arXiv:0806.0876] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    S. Bhattacharya and J. Wudka, Dimension-seven operators in the standard model with right handed neutrinos, Phys. Rev. D 94 (2016) 055022 [Erratum ibid. 95 (2017) 039904] [arXiv:1505.05264] [INSPIRE].

  23. [23]

    Y. Liao and X.-D. Ma, Operators up to Dimension Seven in Standard Model Effective Field Theory Extended with Sterile Neutrinos, Phys. Rev. D 96 (2017) 015012 [arXiv:1612.04527] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    A. de Gouvêa and J. Jenkins, A Survey of Lepton Number Violation Via Effective Operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    M.L. Graesser, An electroweak basis for neutrinoless double β decay, JHEP 08 (2017) 099 [arXiv:1606.04549] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    M. Gustafsson, J.M. No and M.A. Rivera, Lepton number violating operators with standard model gauge fields: A survey of neutrino masses from 3-loops and their link to dark matter, JHEP 11 (2020) 070 [arXiv:2006.13564] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    S. Rao and R.E. Shrock, Six Fermion (B − L) Violating Operators of Arbitrary Generational Structure, Nucl. Phys. B 232 (1984) 143 [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    W.E. Caswell, J. Milutinovic and G. Senjanović, Matter-antimatter transition operators: a manual for modeling, Phys. Lett. B 122 (1983) 373 [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    E. Rinaldi, S. Syritsyn, M.L. Wagman, M.I. Buchoff, C. Schroeder and J. Wasem, Neutron-antineutron oscillations from lattice QCD, Phys. Rev. Lett. 122 (2019) 162001 [arXiv:1809.00246] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    S. Weinberg, Varieties of Baryon and Lepton Nonconservation, Phys. Rev. D 22 (1980) 1694 [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    H.A. Weldon and A. Zee, Operator Analysis of New Physics, Nucl. Phys. B 173 (1980) 269 [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    T. Hambye and J. Heeck, Proton decay into charged leptons, Phys. Rev. Lett. 120 (2018) 171801 [arXiv:1712.04871] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    Y. Liao and J.-Y. Liu, Generalized Fierz Identities and Applications to Spin-3/2 Particles, Eur. Phys. J. Plus 127 (2012) 121 [arXiv:1206.5141] [INSPIRE].

    Google Scholar 

  35. [35]

    A. Kobach, Baryon Number, Lepton Number, and Operator Dimension in the Standard Model, Phys. Lett. B 758 (2016) 455 [arXiv:1604.05726] [INSPIRE].

    ADS  MATH  Google Scholar 

  36. [36]

    Y. Liao, Unique Neutrino Mass Operator at any Mass Dimension, Phys. Lett. B 694 (2011) 346 [arXiv:1009.1692] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    Y. Liao and X.-D. Ma, Perturbative Power Counting, Lowest-Index Operators and Their Renormalization in Standard Model Effective Field Theory, Commun. Theor. Phys. 69 (2018) 285 [arXiv:1701.08019] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. [38]

    Y. Liao, X.-D. Ma and Q.-Y. Wang, Extending low energy effective field theory with a complete set of dimension-7 operators, JHEP 08 (2020) 162 [arXiv:2005.08013] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. [39]

    X.-G. He, X.-D. Ma, J. Tandean and G. Valencia, Evading the Grossman-Nir bound withI = 3/2 new physics, JHEP 08 (2020) 034 [arXiv:2005.02942] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    H. Pas, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, A Superformula for neutrinoless double beta decay. 2. The Short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    G. Prezeau, M. Ramsey-Musolf and P. Vogel, Neutrinoless double beta decay and effective field theory, Phys. Rev. D 68 (2003) 034016 [hep-ph/0303205] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    Y. Liao, X.-D. Ma and H.-L. Wang, Effective field theory approach to lepton number violating decays K ± → π l± l±: short-distance contribution, JHEP 01 (2020) 127 [arXiv:1909.06272] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    V. Cirigliano, W. Dekens, J. de Vries, M.L. Graesser and E. Mereghetti, A neutrinoless double beta decay master formula from effective field theory, JHEP 12 (2018) 097 [arXiv:1806.02780] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    T. Geib, A. Merle and K. Zuber, μ − e+ conversion in upcoming LFV experiments, Phys. Lett. B 764 (2017) 157 [arXiv:1609.09088] [INSPIRE].

  45. [45]

    T. Geib and A. Merle, μ − e+ Conversion from Short-Range Operators, Phys. Rev. D 95 (2017) 055009 [arXiv:1612.00452] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    J.M. Berryman, A. de Gouvêa, K.J. Kelly and A. Kobach, Lepton-number-violating searches for muon to positron conversion, Phys. Rev. D 95 (2017) 115010 [arXiv:1611.00032] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    Mu2e collaboration, The Mu2e Experiment, Front. Phys. 7 (2019) 1 [arXiv:1901.11099] [INSPIRE].

  48. [48]

    Frejus collaboration, Lifetime limits on (B − L) violating nucleon decay and dinucleon decay modes from the Frejus experiment, Phys. Lett. B 269 (1991) 227 [INSPIRE].

  49. [49]

    C. McGrew et al., Search for nucleon decay using the IMB-3 detector, Phys. Rev. D 59 (1999) 052004 [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    Super-Kamiokande collaboration, Dinucleon and Nucleon Decay to Two-Body Final States with no Hadrons in Super-Kamiokande, arXiv:1811.12430 [INSPIRE].

  51. [51]

    J. Heeck and V. Takhistov, Inclusive Nucleon Decay Searches as a Frontier of Baryon Number Violation, Phys. Rev. D 101 (2020) 015005 [arXiv:1910.07647] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    Super-Kamiokande collaboration, Search for Nucleon and Dinucleon Decays with an Invisible Particle and a Charged Lepton in the Final State at the Super-Kamiokande Experiment, Phys. Rev. Lett. 115 (2015) 121803 [arXiv:1508.05530] [INSPIRE].

  53. [53]

    H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete Set of Dimension-9 Operators in the Standard Model Effective Field Theory, arXiv:2007.07899 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.08125

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Ma, XD. An explicit construction of the dimension-9 operator basis in the standard model effective field theory. J. High Energ. Phys. 2020, 152 (2020). https://doi.org/10.1007/JHEP11(2020)152

Download citation

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Neutrino Physics