Charged current Drell-Yan production at N3LO

Abstract

We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Measurement of W± and Z-boson production cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 759 (2016) 601 [arXiv:1603.09222] [INSPIRE].

  2. [2]

    CMS collaboration, Measurements of inclusive and differential Z boson production cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-SMP-15-011 (2016).

  3. [3]

    CMS collaboration, Measurement of inclusive W and Z boson production cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-SMP-15-004 (2015).

  4. [4]

    S.D. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies, Phys. Rev. Lett. 25 (1970) 316 [Erratum ibid. 25 (1970) 902] [INSPIRE].

  5. [5]

    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    B. Mistlberger, Higgs boson production at hadron colliders at N3LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N3LO+NNLL with small-R resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    C. Duhr, F. Dulat and B. Mistlberger, Higgs Boson Production in Bottom-Quark Fusion to Third Order in the Strong Coupling, Phys. Rev. Lett. 125 (2020) 051804 [arXiv:1904.09990] [INSPIRE].

  9. [9]

    C. Duhr, F. Dulat, V. Hirschi and B. Mistlberger, Higgs production in bottom quark fusion: matching the 4- and 5-flavour schemes to third order in the strong coupling, JHEP 08 (2020) 017 [arXiv:2004.04752] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    C. Duhr, F. Dulat and B. Mistlberger, The Drell-Yan cross section to third order in the strong coupling constant, Phys. Rev. Lett. 125 (2020) 172001 [arXiv:2001.07717] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    X. Chen et al., Precise QCD Description of the Higgs Boson Transverse Momentum Spectrum, Phys. Lett. B 788 (2019) 425 [arXiv:1805.00736] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    F. Dulat, B. Mistlberger and A. Pelloni, Precision predictions at N3LO for the Higgs boson rapidity distribution at the LHC, Phys. Rev. D 99 (2019) 034004 [arXiv:1810.09462] [INSPIRE].

  13. [13]

    F.A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs Pair Production at N3LO, Phys. Rev. D 98 (2018) 114016 [arXiv:1811.07906] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    F.A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs Production at Three Loops in QCD, Phys. Rev. Lett. 117 (2016) 072001 [arXiv:1606.00840] [INSPIRE].

  15. [15]

    G. Altarelli, R. Ellis and G. Martinelli, Large Perturbative Corrections to the Drell-Yan Process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    J. Kubar-Andre and F.E. Paige, Gluon Corrections to the Drell-Yan Model, Phys. Rev. D 19 (1979) 221 [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    K. Harada, T. Kaneko and N. Sakai, Hadronic Lepton Pair Production Beyond the Leading Order in Perturbative QCD, Nucl. Phys. B 155 (1979) 169 [Erratum ibid. 165 (1980) 545] [INSPIRE].

  18. [18]

    P. Aurenche and J. Lindfors, {QCD} Corrections to Direct Lepton Production in Hadronic Collisions, Nucl. Phys. B 185 (1981) 274 [INSPIRE].

  19. [19]

    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order \( {\alpha}_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. 644 (2002) 403] [INSPIRE].

  20. [20]

    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

  21. [21]

    K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(\( {\alpha}_s^2 \)), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [INSPIRE].

  22. [22]

    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

  23. [23]

    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

  25. [25]

    C. Anastasiou and K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD, Phys. Rev. D 67 (2003) 037501 [hep-ph/0208115] [INSPIRE].

  26. [26]

    C. Anastasiou, L.J. Dixon and K. Melnikov, NLO Higgs boson rapidity distributions at hadron colliders, Nucl. Phys. B Proc. Suppl. 116 (2003) 193 [hep-ph/0211141] [INSPIRE].

  27. [27]

    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].

  28. [28]

    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. [29]

    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

  31. [31]

    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. [32]

    A.V. Kotikov, Differential equations method: The Calculation of vertex type Feynman diagrams, Phys. Lett. B 259 (1991) 314 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. [33]

    A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. 295 (1992) 409] [INSPIRE].

  34. [34]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

  36. [36]

    T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form-factors: One-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [INSPIRE].

  37. [37]

    G. Heinrich, T. Huber and D. Maître, Master integrals for fermionic contributions to massless three-loop form-factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-Propagator Master Integrals for Massless Three-Loop Form Factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic Results for Massless Three-Loop Form Factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. [40]

    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].

    ADS  MATH  Google Scholar 

  42. [42]

    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to O(ϵ2), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].

    ADS  MATH  Google Scholar 

  43. [43]

    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N3LO, JHEP 12 (2013) 088 [arXiv:1311.1425] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    W.B. Kilgore, One-loop single-real-emission contributions to ppH + X at next-to-next-to-next-to-leading order, Phys. Rev. D 89 (2014) 073008 [arXiv:1312.1296] [INSPIRE].

  45. [45]

    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].

    ADS  MATH  Google Scholar 

  46. [46]

    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    F. Dulat and B. Mistlberger, Real-Virtual-Virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].

  48. [48]

    T. Ahmed, M. Mahakhud, P. Mathews, N. Rana and V. Ravindran, Two-loop QCD corrections to Higgsb + \( \overline{b} \) + g amplitude, JHEP 08 (2014) 075 [arXiv:1405.2324] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N3LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N3LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution, Phys. Rev. D 90 (2014) 053006 [arXiv:1404.5839] [INSPIRE].

  51. [51]

    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N3LO, Phys. Rev. D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].

  52. [52]

    C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, F. Herzog and B. Mistlberger, Soft expansion of double-real-virtual corrections to Higgs production at N3LO, JHEP 08 (2015) 051 [arXiv:1505.04110] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    O.V. Tarasov, A.A. Vladimirov and A. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].

  56. [56]

    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

  57. [57]

    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].

  58. [58]

    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP 02 (2017) 090 [arXiv:1701.01404] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  59. [59]

    S. Buehler and A. Lazopoulos, Scale dependence and collinear subtraction terms for Higgs production in gluon fusion at N3LO, JHEP 10 (2013) 096 [arXiv:1306.2223] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    M. Höschele, J. Hoff, A. Pak, M. Steinhauser and T. Ueda, Higgs boson production at the LHC: NNLO partonic cross sections through order ϵ and convolutions with splitting functions to N3 LO, Phys. Lett. B 721 (2013) 244 [arXiv:1211.6559] [INSPIRE].

    ADS  MATH  Google Scholar 

  61. [61]

    M. Höschele, J. Hoff, A. Pak, M. Steinhauser and T. Ueda, MT: A Mathematica package to compute convolutions, Comput. Phys. Commun. 185 (2014) 528 [arXiv:1307.6925] [INSPIRE].

    ADS  MATH  Google Scholar 

  62. [62]

    S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

  63. [63]

    A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

  64. [64]

    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The three-loop splitting functions \( {P}_{qg}^{(2)}\kern0.5em and\kern0.5em {P}_{gg}^{\left(2,{N}_F\right)} \), Nucl. Phys. B 922 (2017) 1 [arXiv:1705.01508] [INSPIRE].

  65. [65]

    C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08 (2019) 135 [arXiv:1904.07279] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  66. [66]

    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  67. [67]

    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  68. [68]

    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].

    Google Scholar 

  69. [69]

    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [INSPIRE].

  71. [71]

    T.O. Eynck, E. Laenen and L. Magnea, Exponentiation of the Drell-Yan cross-section near partonic threshold in the DIS and MS-bar schemes, JHEP 06 (2003) 057 [hep-ph/0305179] [INSPIRE].

  72. [72]

    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].

  73. [73]

    T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan Production at Threshold to Third Order in QCD, Phys. Rev. Lett. 113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Threshold resummation at N3LL accuracy and soft-virtual cross sections at N3LO, Nucl. Phys. B 888 (2014) 75 [arXiv:1405.4827] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  75. [75]

    A.H. Ajjath, G. Das, M.C. Kumar, P. Mukherjee, V. Ravindran and K. Samanta, Resummed Drell-Yan cross-section at N3LL, JHEP 10 (2020) 153 [arXiv:2001.11377] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    S. Moch and A. Vogt, On non-singlet physical evolution kernels and large-x coefficient functions in perturbative QCD, JHEP 11 (2009) 099 [arXiv:0909.2124] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    G. Soar, S. Moch, J.A.M. Vermaseren and A. Vogt, On Higgs-exchange DIS, physical evolution kernels and fourth-order splitting functions at large x, Nucl. Phys. B 832 (2010) 152 [arXiv:0912.0369] [INSPIRE].

    ADS  MATH  Google Scholar 

  78. [78]

    D. de Florian, J. Mazzitelli, S. Moch and A. Vogt, Approximate N3LO Higgs-boson production cross section using physical-kernel constraints, JHEP 10 (2014) 176 [arXiv:1408.6277] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    S. Marzani, High Energy Resummation in Quantum Chromo-Dynamics, Ph.D. Thesis, University of Edinburgh (2008).

  80. [80]

    S. Marzani and R.D. Ball, High Energy Resummation of Drell-Yan Processes, Nucl. Phys. B 814 (2009) 246 [arXiv:0812.3602] [INSPIRE].

    ADS  MATH  Google Scholar 

  81. [81]

    C.-H. Kom and W. Stirling, Charge asymmetry in W + jets production at the LHC, Eur. Phys. J. C 69 (2010) 67 [arXiv:1004.3404] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  83. [83]

    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

  84. [84]

    M. Cacciari and N. Houdeau, Meaningful characterisation of perturbative theoretical uncertainties, JHEP 09 (2011) 039 [arXiv:1105.5152] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    M. Bonvini, Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders, Eur. Phys. J. C 80 (2020) 989 [arXiv:2006.16293] [INSPIRE].

    ADS  Google Scholar 

  86. [86]

    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  87. [87]

    G. Balossini et al., Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC, JHEP 01 (2010) 013 [arXiv:0907.0276] [INSPIRE].

    ADS  MATH  Google Scholar 

  88. [88]

    A. Denner, S. Dittmaier, T. Kasprzik and A. Muck, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].

    ADS  Google Scholar 

  89. [89]

    A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to monojet production at the LHC, Eur. Phys. J. C 73 (2013) 2297 [arXiv:1211.5078] [INSPIRE].

    ADS  Google Scholar 

  90. [90]

    D. Kara, Corrections of Order ααs to W Boson Decays, Nucl. Phys. B 877 (2013) 683 [arXiv:1307.7190] [INSPIRE].

    ADS  MATH  Google Scholar 

  91. [91]

    W.B. Kilgore and C. Sturm, Two-Loop Virtual Corrections to Drell-Yan Production at order αsα3, Phys. Rev. D 85 (2012) 033005 [arXiv:1107.4798] [INSPIRE].

  92. [92]

    A. Kotikov, J.H. Kühn and O. Veretin, Two-Loop Formfactors in Theories with Mass Gap and Z-Boson Production, Nucl. Phys. B 788 (2008) 47 [hep-ph/0703013] [INSPIRE].

  93. [93]

    S. Dittmaier, A. Huss and C. Schwinn, Mixed QCD-electroweak \( \mathcal{O} \)(αsα) corrections to Drell-Yan processes in the resonance region: pole approximation and non-factorizable corrections, Nucl. Phys. B 885 (2014) 318 [arXiv:1403.3216] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  94. [94]

    F. Buccioni, F. Caola, M. Delto, M. Jaquier, K. Melnikov and R. Röntsch, Mixed QCD-electroweak corrections to on-shell Z production at the LHC, arXiv:2005.10221 [INSPIRE].

  95. [95]

    M. Delto, M. Jaquier, K. Melnikov and R. Röntsch, Mixed QCDQED corrections to on-shell Z boson production at the LHC, JHEP 01 (2020) 043 [arXiv:1909.08428] [INSPIRE].

    ADS  Google Scholar 

  96. [96]

    R. Bonciani, F. Buccioni, N. Rana, I. Triscari and A. Vicini, NNLO QCD×EW corrections to Z production in the \( q\overline{q} \) channel, Phys. Rev. D 101 (2020) 031301 [arXiv:1911.06200] [INSPIRE].

  97. [97]

    R. Bonciani, F. Buccioni, N. Rana and A. Vicini, NNLO QCD×EW corrections to on-shell Z production, arXiv:2007.06518 [INSPIRE].

  98. [98]

    F. Dulat, B. Mistlberger and A. Pelloni, Differential Higgs production at N3LO beyond threshold, JHEP 01 (2018) 145 [arXiv:1710.03016] [INSPIRE].

    ADS  Google Scholar 

  99. [99]

    L. Cieri, X. Chen, T. Gehrmann, E.W.N. Glover and A. Huss, Higgs boson production at the LHC using the qT subtraction formalism at N3LO QCD, JHEP 02 (2019) 096 [arXiv:1807.11501] [INSPIRE].

    ADS  Google Scholar 

  100. [100]

    G. Billis, M.A. Ebert, J.K.L. Michel and F.J. Tackmann, A Toolbox for qT and 0-Jettiness Subtractions at N3LO, arXiv:1909.00811 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claude Duhr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.13313

Supplementary Information

ESM 1

(TGZ 827 kb)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duhr, C., Dulat, F. & Mistlberger, B. Charged current Drell-Yan production at N3LO. J. High Energ. Phys. 2020, 143 (2020). https://doi.org/10.1007/JHEP11(2020)143

Download citation

Keywords

  • QCD Phenomenology
  • NLO Computations