Fully exclusive heavy quark-antiquark pair production from a colourless initial state at NNLO in QCD

Abstract

We present a local subtraction scheme for computing next-to-next-to-leading order QCD corrections to the production of a massive quark-antiquark pair from a colourless initial state. The subtraction terms are built following the CoLoRFulNNLO method and refined in such a way that their integration gives rise to compact, fully analytic expressions. All ingredients necessary for a numerical implementation of our subtraction scheme are provided in detail. As an example, we calculate the fully differential decay rate of the Standard Model Higgs boson to massive bottom quarks at next-to-next-to-leading order accuracy in perturbative QCD.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

  2. [2]

    R. Boughezal, C. Focke, X. Liu and F. Petriello, W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].

  3. [3]

    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness subtractions for NNLO QCD calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].

    Article  Google Scholar 

  4. [4]

    A. Gehrmann-De Ridder, T. Gehrmann and E.W. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

  5. [5]

    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].

  6. [6]

    A. Gehrmann-De Ridder, T. Gehrmann and E.W. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].

  7. [7]

    A. Gehrmann-De Ridder, T. Gehrmann and E.W. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].

  8. [8]

    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    J. Currie, E.W.N. Glover and S. Wells, Infrared structure at NNLO using antenna subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226] [INSPIRE].

  14. [14]

    G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [INSPIRE].

  15. [15]

    G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [INSPIRE].

  16. [16]

    G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms. I, JHEP 08 (2008) 042 [arXiv:0807.0509] [INSPIRE].

  17. [17]

    U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. I, JHEP 09 (2008) 107 [arXiv:0807.0514] [INSPIRE].

  18. [18]

    G. Somogyi, Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. II, JHEP 08 (2009) 079 [arXiv:0905.4390] [INSPIRE].

  20. [20]

    P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01 (2011) 059 [arXiv:1011.1909] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    V. Del Duca, G. Somogyi and Z. Trócsányi, Integration of collinear-type doubly unresolved counterterms in NNLO jet cross sections, JHEP 06 (2013) 079 [arXiv:1301.3504] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    G. Somogyi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms, JHEP 04 (2013) 010 [arXiv:1301.3919] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys. B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, Single-jet inclusive rates with exact color at \( \mathcal{O}\left({\alpha}_s^4\right) \), JHEP 10 (2019) 262 [arXiv:1907.12911] [INSPIRE].

  27. [27]

    F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J. C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    F. Caola, M. Delto, H. Frellesvig and K. Melnikov, The double-soft integral for an arbitrary angle between hard radiators, Eur. Phys. J. C 78 (2018) 687 [arXiv:1807.05835] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    M. Delto and K. Melnikov, Integrated triple-collinear counter-terms for the nested soft-collinear subtraction scheme, JHEP 05 (2019) 148 [arXiv:1901.05213] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    F. Caola, K. Melnikov and R. Röntsch, Analytic results for color-singlet production at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J. C 79 (2019) 386 [arXiv:1902.02081] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    F. Caola, K. Melnikov and R. Röntsch, Analytic results for decays of color singlets to gg and \( q\overline{q} \) final states at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J. C 79 (2019) 1013 [arXiv:1907.05398] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082002 [Erratum ibid. 120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].

  33. [33]

    L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Local analytic sector subtraction at NNLO, JHEP 12 (2018) 107 [Erratum ibid. 06 (2019) 013] [arXiv:1806.09570] [INSPIRE].

  34. [34]

    L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Factorisation and subtraction beyond NLO, JHEP 12 (2018) 062 [arXiv:1809.05444] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    F. Herzog, Geometric IR subtraction for final state real radiation, JHEP 08 (2018) 006 [arXiv:1804.07949] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    J. Gao and H.X. Zhu, Top quark forward-backward asymmetry in e+e annihilation at next-to-next-to-leading order in QCD, Phys. Rev. Lett. 113 (2014) 262001 [arXiv:1410.3165] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    J. Gao and H.X. Zhu, Electroweak prodution of top-quark pairs in e+e annihilation at NNLO in QCD: the vector contributions, Phys. Rev. D 90 (2014) 114022 [arXiv:1408.5150] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    L. Chen, O. Dekkers, D. Heisler, W. Bernreuther and Z.-G. Si, Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions, JHEP 12 (2016) 098 [arXiv:1610.07897] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    W. Bernreuther, L. Chen and Z.-G. Si, Differential decay rates of CP-even and CP-odd Higgs bosons to top and bottom quarks at NNLO QCD, JHEP 07 (2018) 159 [arXiv:1805.06658] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    A. Behring and W. Bizoń, Higgs decay into massive b-quarks at NNLO QCD in the nested soft-collinear subtraction scheme, JHEP 01 (2020) 189 [arXiv:1911.11524] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: the vector contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].

  42. [42]

    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: axial vector contributions, Nucl. Phys. B 712 (2005) 229 [hep-ph/0412259] [INSPIRE].

  43. [43]

    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: anomaly contributions, Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190] [INSPIRE].

  44. [44]

    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, P. Mastrolia and E. Remiddi, Decays of scalar and pseudoscalar Higgs bosons into fermions: two-loop QCD corrections to the Higgs-quark-antiquark amplitude, Phys. Rev. D 72 (2005) 096002 [hep-ph/0508254] [INSPIRE].

  45. [45]

    J. Ablinger et al., Heavy quark form factors at two loops, Phys. Rev. D 97 (2018) 094022 [arXiv:1712.09889] [INSPIRE].

  46. [46]

    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  47. [47]

    P. Nason, S. Dawson and R. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. 335 (1990) 260] [INSPIRE].

  48. [48]

    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  49. [49]

    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math.AG/0103059 [INSPIRE].

  50. [50]

    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  51. [51]

    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet structure and infrared sensitive quantities in perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    V. Del Duca, N. Deutschmann and S. Lionetti, Momentum mappings for subtractions at higher orders in QCD, JHEP 12 (2019) 129 [arXiv:1910.01024] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP 09 (2007) 114 [arXiv:0706.0017] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

  55. [55]

    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [Erratum ibid. 62 (2000) 099902] [hep-ph/9806317] [INSPIRE].

  56. [56]

    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].

  57. [57]

    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function for S → \( Q\overline{Q}q\overline{q} \) at NNLO QCD, JHEP 06 (2011) 032 [arXiv:1105.0530] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna functions for S → \( Q\overline{Q} gg \) at NNLO QCD, JHEP 10 (2013) 161 [arXiv:1309.6887] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].

  61. [61]

    C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08 (2019) 135 [arXiv:1904.07279] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    G. Somogyi, Angular integrals in d dimensions, J. Math. Phys. 52 (2011) 083501 [arXiv:1101.3557] [INSPIRE].

  63. [63]

    I. Bierenbaum, M. Czakon and A. Mitov, The singular behavior of one-loop massive QCD amplitudes with one external soft gluon, Nucl. Phys. B 856 (2012) 228 [arXiv:1107.4384] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  64. [64]

    M.L. Czakon and A. Mitov, A simplified expression for the one-loop soft-gluon current with massive fermions, arXiv:1804.02069 [INSPIRE].

  65. [65]

    K.G. Chetyrkin and A. Kwiatkowski, Second order QCD corrections to scalar and pseudoscalar Higgs decays into massive bottom quarks, Nucl. Phys. B 461 (1996) 3 [hep-ph/9505358] [INSPIRE].

  66. [66]

    S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, The large top quark mass expansion for Higgs boson decays into bottom quarks and into gluons, Phys. Lett. B 362 (1995) 134 [hep-ph/9506465] [INSPIRE].

  67. [67]

    A. Primo, G. Sasso, G. Somogyi and F. Tramontano, Exact top Yukawa corrections to Higgs boson decay into bottom quarks, Phys. Rev. D 99 (2019) 054013 [arXiv:1812.07811] [INSPIRE].

  68. [68]

    G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].

  70. [70]

    E. Braaten and J.P. Leveille, Higgs boson decay and the running mass, Phys. Rev. D 22 (1980) 715 [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    M. Drees and K.-I. Hikasa, Note on QCD corrections to hadronic Higgs decay, Phys. Lett. B 240 (1990) 455 [Erratum ibid. 262 (1991) 497] [INSPIRE].

  72. [72]

    R. Harlander and M. Steinhauser, Higgs decay to top quarks at \( O\left({\alpha}_s^2\right) \), Phys. Rev. D 56 (1997) 3980 [hep-ph/9704436] [INSPIRE].

  73. [73]

    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e+e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three loop relation of quark (modified) \( \overline{M}S \) and pole masses, Z. Phys. C 48 (1990) 673 [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z2 in QED, QCD and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. [76]

    J. Fleischer, F. Jegerlehner, O.V. Tarasov and O.L. Veretin, Two loop QCD corrections of the massive fermion propagator, Nucl. Phys. B 539 (1999) 671 [Erratum ibid. 571 (2000) 511] [hep-ph/9803493] [INSPIRE].

  77. [77]

    K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gábor Somogyi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.15015

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Somogyi, G., Tramontano, F. Fully exclusive heavy quark-antiquark pair production from a colourless initial state at NNLO in QCD. J. High Energ. Phys. 2020, 142 (2020). https://doi.org/10.1007/JHEP11(2020)142

Download citation

Keywords

  • Perturbative QCD
  • Higgs Physics