Hidden sector monopole dark matter with matter domination

Abstract

The thermal freeze-out mechanism for relic dark matter heavier than O(10 100 TeV) requires cross-sections that violate perturbative unitarity. Yet the existence of dark matter heavier than these scales is certainly plausible from a particle physics perspective, pointing to the need for a non-thermal cosmological history for such theories. Topological dark matter is a well-motivated scenario of this kind. Here the hidden-sector dark matter can be produced in abundance through the Kibble-Zurek mechanism describing the non-equilibrium dynamics of defects produced in a second order phase transition. We revisit the original topological dark matter scenario, focusing on hidden-sector magnetic monopoles, and consider more general cosmological histories. We find that a monopole mass of order (1–105) PeV is generic for the thermal histories considered here, if monopoles are to entirely reproduce the current abundance of dark matter. In particular, in a scenario involving an early era of matter domination, the monopole number density is always less than or equal to that in a pure radiation dominated equivalent provided a certain condition on critical exponents is satisfied. This results in a larger monopole mass needed to account for a fixed relic abundance in such cosmologies.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    HESS collaboration, Search for γ-ray line signals from dark matter annihilations in the inner galactic halo from 10 years of observations with H.E.S.S., Phys. Rev. Lett. 120 (2018) 201101 [arXiv:1805.05741] [INSPIRE].

  2. [2]

    M. Baumgart et al., Resummed photon spectra for WIMP annihilation, JHEP 03 (2018) 117 [arXiv:1712.07656] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept. 555 (2015) 1 [arXiv:1407.0017] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    T.W.B. Kibble, Some implications of a cosmological phase transition, Phys. Rept. 67 (1980) 183 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    W.H. Zurek, Cosmological experiments in superfluid helium?, Nature 317 (1985) 505 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    W.H. Zurek, Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions, Acta Phys. Polon. B 24 (1993) 1301 [INSPIRE].

    Google Scholar 

  8. [8]

    W.H. Zurek, Cosmological experiments in condensed matter systems, Phys. Rept. 276 (1996) 177 [cond-mat/9607135] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S.Z. Lin et al., Topological defects as relics of emergent continuous symmetry and higgs condensation of disorder in ferroelectrics, Nature Phys. 10 (2014) 970.

    ADS  Article  Google Scholar 

  10. [10]

    N. Navon, A. L. Gaunt, R.P. Smith and Z. Hadzibabic, Critical dynamics of spontaneous symmetry breaking in a homogeneous bose gas, Science 347 (2015) 167.

    ADS  Article  Google Scholar 

  11. [11]

    L. Chomaz et al., Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional bose gas, Nature Commun. 6 (2015) 6162.

    ADS  Article  Google Scholar 

  12. [12]

    J. Beugnon and N. Navon, Exploring the Kibble-Zurek mechanism with homogeneous bose gases, J. Phys. B 50 (2017) 022002.

    ADS  Article  Google Scholar 

  13. [13]

    Q.N. Meier et al., Global Formation of Topological Defects in the Multiferroic Hexagonal Manganites, Phys. Rev. X 7 (2017) 041014 [arXiv:1703.08321] [INSPIRE].

    Google Scholar 

  14. [14]

    H. Murayama and J. Shu, Topological dark matter, Phys. Lett. B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J.E. Kim, Effects of decay of scalar partner of axion on cosmological bounds of axion supermultiplet properties, Phys. Rev. Lett. 67 (1991) 3465 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    M. Kawasaki, T. Moroi and T. Yanagida, Can decaying particles raise the upper bound on the Peccei-Quinn scale?, Phys. Lett. B 383 (1996) 313 [hep-ph/9510461] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Banks and M. Dine, The cosmology of string theoretic axions, Nucl. Phys. B 505 (1997) 445 [hep-th/9608197] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    J.E. Kim, Can strong QCD action in the early universe raise the axion decay constant?, in 28th International Conference on High-energy Physics, pp. 1537–1540, 7, 1996 [hep-ph/9610264] [INSPIRE].

  19. [19]

    M. Hashimoto, K.I. Izawa, M. Yamaguchi and T. Yanagida, Axion cosmology with its scalar superpartner, Phys. Lett. B 437 (1998) 44 [hep-ph/9803263] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    T. Asaka and M. Yamaguchi, Hadronic axion model in gauge mediated supersymmetry breaking and cosmology of saxion, Phys. Rev. D 59 (1999) 125003 [hep-ph/9811451] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    T. Banks, M. Dine and M. Graesser, Supersymmetry, axions and cosmology, Phys. Rev. D 68 (2003) 075011 [hep-ph/0210256] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    G. Kane, K. Sinha and S. Watson, Cosmological moduli and the post-inflationary universe: a critical review, Int. J. Mod. Phys. D 24 (2015) 1530022 [arXiv:1502.07746] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    E.N. Parker, The origin of magnetic fields, Astrophys. J. 160 (1970) 383 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M.S. Turner, E.N. Parker and T.J. Bogdan, Magnetic monopoles and the survival of galactic magnetic fields, Phys. Rev. D 26 (1982) 1296 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    C. Gomez Sanchez and B. Holdom, Monopoles, strings and dark matter, Phys. Rev. D 83 (2011) 123524 [arXiv:1103.1632] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    A. Hook and J. Huang, Bounding millimagnetically charged particles with magnetars, Phys. Rev. D 96 (2017) 055010 [arXiv:1705.01107] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    J. Terning and C.B. Verhaaren, Detecting dark matter with Aharonov-Bohm, JHEP 12 (2019) 152 [arXiv:1906.00014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    A. del Campo and W.H. Zurek, Universality of phase transition dynamics: topological defects from symmetry breaking, Int. J. Mod. Phys. A 29 (2014) 1430018 [arXiv:1310.1600] [INSPIRE].

    Article  Google Scholar 

  29. [29]

    W.H. Zurek, Topological relics of symmetry breaking: winding numbers and scaling tilts from random vortex-antivortex pairs, J. Phys. Condens. Matter 25 (2013) 404209 [arXiv:1305.4695] [INSPIRE].

    Article  Google Scholar 

  30. [30]

    L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    W.H. Zurek, U. Dorner and P. Zoller, Dynamics of a quantum phase transition, Phys. Rev. Lett. 95 (2005) 105701 [cond-mat/0503511] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    J. Dziarmaga, Dynamics of a quantum phase transition: exact solution of the quantum ising model, Phys. Rev. Lett. 95 (2005) 245701.

    ADS  Article  Google Scholar 

  33. [33]

    J. Preskill, Cosmological Production of Superheavy Magnetic Monopoles, Phys. Rev. Lett. 43 (1979) 1365 [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  35. [35]

    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    S. Paik and L.G. Yaffe, Thermodynamics of SU(2) N = 2 supersymmetric Yang-Mills theory, JHEP 01 (2010) 059 [arXiv:0911.1392] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    M. Drees and F. Hajkarim, Dark matter production in an early matter dominated era, JCAP 02 (2018) 057 [arXiv:1711.05007] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    R. Allahverdi and J.K. Osiński, Freeze-in production of dark matter prior to early matter domination, Phys. Rev. D 101 (2020) 063503 [arXiv:1909.01457] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  41. [41]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  42. [42]

    A.L. Erickcek, The dark matter annihilation boost from low-temperature reheating, Phys. Rev. D 92 (2015) 103505 [arXiv:1504.03335] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

  45. [45]

    L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, Dark matter and dark radiation, arXiv:0810.5126 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jacek K. Osiński.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.07917

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Graesser, M.L., Osiński, J.K. Hidden sector monopole dark matter with matter domination. J. High Energ. Phys. 2020, 133 (2020). https://doi.org/10.1007/JHEP11(2020)133

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM