Journal of High Energy Physics

, 2016:183 | Cite as

Power corrections to the electromagnetic spectral function and the dilepton rate in QCD plasma within operator product expansion in D = 4

Open Access
Regular Article - Theoretical Physics


We evaluate the electromagnetic spectral function in QCD plasma in a nonperturbative background of in-medium quark and gluon condensates by incorporating the leading order power corrections in a systematic framework within the ambit of the operator product expansion in D = 4 dimension. We explicitly show that the mixing of the composite operators removes mass singularities and renders Wilson coefficients finite and well defined. As a spectral property, we then obtain the nonperturbative dilepton production rate from QCD plasma. The operator product expansion automatically restricts the dilepton rate to the intermediate mass range, which is found to be enhanced due to the power corrections. We also compare our result with those from nonperturbative calculations, e.g., lattice QCD and effective QCD models based on Polyakov loop.


Heavy Ion Phenomenology QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Le Bellac, Thermal field theory, Cambridge University Press, Cambridge (1996).CrossRefGoogle Scholar
  2. [2]
    H.A. Weldon, Simple Rules for Discontinuities in Finite Temperature Field Theory, Phys. Rev. D 28 (1983) 2007 [INSPIRE].ADSGoogle Scholar
  3. [3]
    H.A. Weldon, Reformulation of finite temperature dilepton production, Phys. Rev. D 42 (1990) 2384 [INSPIRE].ADSGoogle Scholar
  4. [4]
    L.D. McLerran and T. Toimela, Photon and Dilepton Emission from the quark-gluon Plasma: Some General Considerations, Phys. Rev. D 31 (1985) 545 [INSPIRE].ADSGoogle Scholar
  5. [5]
    R.C. Hwa and K. Kajantie, Diagnosing Quark Matter by Measuring the Total Entropy and the Photon Or Dilepton Emission Rates, Phys. Rev. D 32 (1985) 1109 [INSPIRE].ADSGoogle Scholar
  6. [6]
    K. Kajantie, J.I. Kapusta, L.D. McLerran and A. Mekjian, Dilepton Emission and the QCD Phase Transition in Ultrarelativistic Nuclear Collisions, Phys. Rev. D 34 (1986) 2746 [INSPIRE].ADSGoogle Scholar
  7. [7]
    K. Kajantie, M. Kataja, L.D. McLerran and P.V. Ruuskanen, Transverse Flow Effects in Dilepton Emission, Phys. Rev. D 34 (1986) 811 [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Cleymans, J. Fingberg and K. Redlich, Transverse Momentum Distribution of Dileptons in Different Scenarios for the QCD Phase Transition, Phys. Rev. D 35 (1987) 2153 [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Cleymans and I. Dadic, Lepton pair production from a quark-gluon plasma to first order in α s, Phys. Rev. D 47 (1993) 160 [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Gale and J.I. Kapusta, What Is Interesting About Dilepton Production At Bevalac/Sis/Ags Energies?, Nucl. Phys. A 495 (1989) 423C [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Gale and J.I. Kapusta, Dilepton radiation from high temperature nuclear matter, Phys. Rev. C 35 (1987) 2107 [INSPIRE].ADSGoogle Scholar
  12. [12]
    E. Braaten, R.D. Pisarski and T.-C. Yuan, Production of Soft Dileptons in the quark-gluon Plasma, Phys. Rev. Lett. 64 (1990) 2242 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Karsch, M.G. Mustafa and M.H. Thoma, Finite temperature meson correlation functions in HTL approximation, Phys. Lett. B 497 (2001) 249 [hep-ph/0007093] [INSPIRE].
  14. [14]
    A. Bandyopadhyay, N. Haque, M.G. Mustafa and M. Strickland, Dilepton rate and quark number susceptibility with the Gribov action, Phys. Rev. D 93 (2016) 065004 [arXiv:1508.06249] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Greiner, N. Haque, M.G. Mustafa and M.H. Thoma, Low Mass Dilepton Rate from the Deconfined Phase, Phys. Rev. C 83 (2011) 014908 [arXiv:1010.2169] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Aurenche, F. Gelis, R. Kobes and H. Zaraket, Bremsstrahlung and photon production in thermal QCD, Phys. Rev. D 58 (1998) 085003 [hep-ph/9804224] [INSPIRE].
  17. [17]
    M.G. Mustafa, A. Schafer and M.H. Thoma, Nonperturbative dilepton production from a quark gluon plasma, Phys. Rev. C 61 (2000) 024902 [hep-ph/9908461] [INSPIRE].
  18. [18]
    F. Karsch, E. Laermann, P. Petreczky, S. Stickan and I. Wetzorke, A Lattice calculation of thermal dilepton rates, Phys. Lett. B 530 (2002) 147 [hep-lat/0110208] [INSPIRE].
  19. [19]
    H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann and W. Soeldner, Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD, Phys. Rev. D 83 (2011) 034504 [arXiv:1012.4963] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H.-T. Ding, O. Kaczmarek and F. Meyer, Thermal dilepton rates and electrical conductivity of the QGP from the lattice, Phys. Rev. D 94 (2016) 034504 [arXiv:1604.06712] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C.A. Islam, S. Majumder, N. Haque and M.G. Mustafa, Vector meson spectral function and dilepton production rate in a hot and dense medium within an effective QCD approach, JHEP 02 (2015) 011 [arXiv:1411.6407] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Bandyopadhyay, C.A. Islam and M.G. Mustafa, Electromagnetic spectral properties and Debye screening of a strongly magnetized hot medium, arXiv:1602.06769 [INSPIRE].
  23. [23]
    N. Sadooghi and F. Taghinavaz, Dilepton production rate in a hot and magnetized quark-gluon plasma, arXiv:1601.04887 [INSPIRE].
  24. [24]
    K. Tuchin, Magnetic contribution to dilepton production in heavy-ion collisions, Phys. Rev. C 88 (2013) 024910 [arXiv:1305.0545] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C. Gale et al., Production and Elliptic Flow of Dileptons and Photons in a Matrix Model of the quark-gluon Plasma, Phys. Rev. Lett. 114 (2015) 072301 [arXiv:1409.4778] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.A. Islam, S. Majumder and M.G. Mustafa, Vector meson spectral function and dilepton rate in the presence of strong entanglement effect between the chiral and the Polyakov loop dynamics, Phys. Rev. D 92 (2015) 096002 [arXiv:1508.04061] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.K. Srivastava, C. Gale and R.J. Fries, Large mass dileptons from the passage of jets through quark gluon plasma, Phys. Rev. C 67 (2003) 034903 [nucl-th/0209063] [INSPIRE].
  28. [28]
    I. Kvasnikova, C. Gale and D.K. Srivastava, Production of intermediate mass dileptons in relativistic heavy ion collisions, Phys. Rev. C 65 (2002) 064903 [hep-ph/0112139] [INSPIRE].
  29. [29]
    R. Chatterjee, D.K. Srivastava, U.W. Heinz and C. Gale, Elliptic flow of thermal dileptons in relativistic nuclear collisions, Phys. Rev. C 75 (2007) 054909 [nucl-th/0702039] [INSPIRE].
  30. [30]
    M. Laine, NLO thermal dilepton rate at non-zero momentum, JHEP 11 (2013) 120 [arXiv:1310.0164] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I. Ghisoiu and M. Laine, Interpolation of hard and soft dilepton rates, JHEP 10 (2014) 83 [arXiv:1407.7955] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Ghiglieri and G.D. Moore, Low Mass Thermal Dilepton Production at NLO in a Weakly Coupled quark-gluon Plasma, JHEP 12 (2014) 029 [arXiv:1410.4203] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.D. Drell and T.-M. Yan, Connection of Elastic Electromagnetic Nucleon Form-Factors at Large Q 2 and Deep Inelastic Structure Functions Near Threshold, Phys. Rev. Lett. 24 (1970) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C.A. Dominguez, M. Loewe, J.C. Rojas and Y. Zhang, Charmonium in the vector channel at finite temperature from QCD sum rules, Phys. Rev. D 81 (2010) 014007 [arXiv:0908.2709] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C.A. Dominguez, M. Loewe, J.C. Rojas and Y. Zhang, (Pseudo)Scalar Charmonium in Finite Temperature QCD, Phys. Rev. D 83 (2011) 034033 [arXiv:1010.4172] [INSPIRE].
  36. [36]
    PHENIX collaboration, A. Adare et al., Detailed measurement of the e + e pair continuum in p + p and Au+Au collisions at \( \sqrt{s_{N\ N}} = 200 \) GeV and implications for direct photon production, Phys. Rev. C 81 (2010) 034911 [arXiv:0912.0244] [INSPIRE].
  37. [37]
    E.V. Shuryak, Quark-gluon Plasma and Hadronic Production of Leptons, Photons and Psions, Phys. Lett. B 78 (1978) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Aarts and J.M. Martinez Resco, Transport coefficients, spectral functions and the lattice, JHEP 04 (2002) 053 [hep-ph/0203177] [INSPIRE].
  39. [39]
    O. Kaczmarek and A. Francis, Electrical conductivity and thermal dilepton rate from quenched lattice QCD, J. Phys. G 38 (2011) 124178 [arXiv:1109.4054] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Aarts and J.M. Martinez Resco, Continuum and lattice meson spectral functions at nonzero momentum and high temperature, Nucl. Phys. B 726 (2005) 93 [hep-lat/0507004] [INSPIRE].
  41. [41]
    A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands and J.-I. Skullerud, Electrical conductivity of the quark-gluon plasma across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 172001 [arXiv:1307.6763] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands and J.-I. Skullerud, Electrical conductivity and charge diffusion in thermal QCD from the lattice, JHEP 02 (2015) 186 [arXiv:1412.6411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].
  44. [44]
    Y. Nakahara, M. Asakawa and T. Hatsuda, Hadronic spectral functions in lattice QCD, Phys. Rev. D 60 (1999) 091503 [hep-lat/9905034] [INSPIRE].
  45. [45]
    G. Cuniberti, E. De Micheli and G.A. Viano, Reconstructing the thermal Green functions at real times from those at imaginary times, Commun. Math. Phys. 216 (2001) 59 [cond-mat/0109175] [INSPIRE].
  46. [46]
    M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Gluon condensate and leptonic decays of vector mesons, JETP. Lett. 27 (1978) 60 [INSPIRE].ADSGoogle Scholar
  48. [48]
    M.J. Lavelle and M. Schaden, Propagators and Condensates in QCD, Phys. Lett. B 208 (1988) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics. Theoretical Foundations, Nucl. Phys. B 147 (1979) 385 [INSPIRE].
  50. [50]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics: Applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev. 179 (1969) 1499 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Operator expansion in quantum chromodynamics beyond perturbation theory, Nucl. Phys. B 174 (1980) 378 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    W. Hubschmid and S. Mallik, Operator expansion at short distance in QCD, Nucl. Phys. B 207 (1982) 29 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Mallik, Operator Product Expansion in QCD at Short Distance. 2., Nucl. Phys. B 234 (1984) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    E. Bagan, M.R. Ahmady, V. Elias and T.G. Steele, Equivalence of plane wave and coordinate space techniques in the operator product expansion, Z. Phys. C 61 (1994) 157 [INSPIRE].ADSGoogle Scholar
  56. [56]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Wilsons Operator Expansion: Can It Fail?, Nucl. Phys. B 249 (1985) 445 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Two-Dimensional σ-models: Modeling Nonperturbative Effects of Quantum Chromodynamics, Phys. Rept. 116 (1984) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    S. Narison, QCD as a theory of hadrons from partons to confinement, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17 (2001) 1 [hep-ph/0205006] [INSPIRE].
  59. [59]
    S. Caron-Huot, Asymptotics of thermal spectral functions, Phys. Rev. D 79 (2009) 125009 [arXiv:0903.3958] [INSPIRE].ADSGoogle Scholar
  60. [60]
    E.V. Shuryak, The QCD vacuum, hadrons and the superdense matter, World Sci. Lect. Notes Phys. 71 (2004) 1 [World Sci. Lect. Notes Phys. 8 (1988) 1] [INSPIRE].
  61. [61]
    A.I. Bochkarev and M.E. Shaposhnikov, Spectrum of the Hot Hadronic Matter and Finite Temperature QCD Sum Rules, Nucl. Phys. B 268 (1986) 220 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    R.J. Furnstahl, T. Hatsuda and S.H. Lee, Applications of QCD Sum Rules at Finite Temperature, Phys. Rev. D 42 (1990) 1744 [INSPIRE].ADSGoogle Scholar
  63. [63]
    T.H. Hansson and I. Zahed, Qcd Sum Rules At High Temperature, PRINT-90-0339, Stony-Brook (1990) [INSPIRE].
  64. [64]
    A.I. Bochkarev and M.E. Shaposhnikov, The First Order Quark-Hadron Phase Transition in QCD, Phys. Lett. B 145 (1984) 276 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    H.G. Dosch and S. Narison, ρ-meson spectrum at finite temperature, Phys. Lett. B 203 (1988) 155 [INSPIRE].
  66. [66]
    A.V. Smilga, Calculation of the degree corrections in fixed point gauge (in Russian), Sov. J. Nucl. Phys. 35 (1982) 271 [INSPIRE].Google Scholar
  67. [67]
    L.J. Reinders, H. Rubinstein and S. Yazaki, Hadron Properties from QCD Sum Rules, Phys. Rept. 127 (1985) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Mallik, Operator product expansion at finite temperature, Phys. Lett. B 416 (1998) 373 [hep-ph/9710556] [INSPIRE].
  69. [69]
    D. Antonov, Heavy-quark condensate at zero and finite temperatures for various forms of the short-distance potential, Nucl. Phys. Proc. Suppl. 152 (2006) 144 [hep-ph/0411066] [INSPIRE].
  70. [70]
    G. Basar, D.E. Kharzeev and E.V. Shuryak, Magneto-sonoluminescence and its signatures in photon and dilepton production in relativistic heavy ion collisions, Phys. Rev. C 90 (2014) 014905 [arXiv:1402.2286] [INSPIRE].ADSGoogle Scholar
  71. [71]
    P. Pascual and E. de Rafael, Gluonic Corrections to Quark Vacuum Condensate Contributions to Two Point Functions in QCD, Z. Phys. C 12 (1982) 127 [INSPIRE].ADSGoogle Scholar
  72. [72]
    M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley Advanced Book Program (1995).Google Scholar
  73. [73]
    S.C. Generalis and D.J. Broadhurst, The Heavy Quark Expansion and QCD Sum Rules for Light Quarks, Phys. Lett. B 139 (1984) 85 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    D.J. Broadhurst and S.C. Generalis, Can mass singularities be minimally subtracted?, Phys. Lett. B 142 (1984) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S.N. Nikolaev and A.V. Radyushkin, Vacuum Corrections to QCD Charmonium Sum Rules: Basic Formalism and O(G 3) Results, Nucl. Phys. B 213 (1983) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S.N. Nikolaev and A.V. Radyushkin, QCD charmonium sum rules up to O(G 4) order (in Russian), Phys. Lett. B 124 (1983) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    S.N. Nikolaev and A.V. Radyushkin, Method for Computing Higher Gluonic Power Corrections to QCD Charmonium Sum Rules, Phys. Lett. B 110 (1982) 476 [Erratum ibid. B 116 (1982) 469] [INSPIRE].
  78. [78]
    A.G. Grozin, Methods of calculation of higher power corrections in QCD, Int. J. Mod. Phys. A 10 (1995) 3497 [hep-ph/9412238] [INSPIRE].
  79. [79]
    D.J. Broadhurst and S.C. Generalis, Dimension eight contributions to light quark QCD sum rules, Phys. Lett. B 165 (1985) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    S. Zschocke, T. Hilger and B. Kampfer, In-medium operator product expansion for heavy-light-quark pseudoscalar mesons, Eur. Phys. J. A 47 (2011) 151 [arXiv:1112.2477] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Theory DivisionSaha Institute of Nuclear Physics, HBNIKolkataIndia

Personalised recommendations