Journal of High Energy Physics

, 2016:179 | Cite as

There and back again: a T-brane’s tale

  • Iosif Bena
  • Johan Blåbäck
  • Ruben Minasian
  • Raffaele Savelli
Open Access
Regular Article - Theoretical Physics


T-branes are supersymmetric configurations described by multiple Dp-branes with worldvolume flux and non-commuting vacuum expectation values for two of the worldvolume scalars. When these values are much larger than the string scale this description breaks down. We show that in this regime the correct description of T-branes is in terms of a single Dp-brane, whose worldvolume curvature encodes the T-brane data. We present the tale of the journey to reach this picture, which takes us through T-dualities and rugbyball-shaped brane configurations that no eye has gazed upon before.


D-branes String Duality 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    C.-C. Chiou, A.E. Faraggi, R. Tatar and W. Walters, T-branes and Yukawa couplings, JHEP 05 (2011) 023 [arXiv:1101.2455] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R. Donagi and M. Wijnholt, Gluing branes, I, JHEP 05 (2013) 068 [arXiv:1104.2610] [INSPIRE].
  5. [5]
    R. Donagi and M. Wijnholt, Gluing branes II: flavour physics and string duality, JHEP 05 (2013) 092 [arXiv:1112.4854] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Global gluing and G-flux, JHEP 08 (2013) 001 [arXiv:1211.1097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    M. Cicoli, F. Quevedo and R. Valandro, De Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Carta, F. Marchesano and G. Zoccarato, Fitting fermion masses and mixings in F-theory GUTs, JHEP 03 (2016) 126 [arXiv:1512.04846] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev. D 61 (2000) 106009 [hep-th/9911136] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    C.G. Callan and J.M. Maldacena, Brane death and dynamics from the Born-Infeld action, Nucl. Phys. B 513 (1998) 198 [hep-th/9708147] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theoryI, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    W. Nahm, A simple formalism for the BPS monopole, Phys. Lett. B 90 (1980) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N.R. Constable, R.C. Myers and O. Tafjord, Fuzzy funnels: non-Abelian brane intersections, in Strings 2001: international conference, Mumbai India January 5-10 2001 [hep-th/0105035] [INSPIRE].
  21. [21]
    A.A. Tseytlin, On non-Abelian generalization of Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    W. Taylor and M. Van Raamsdonk, Multiple Dp-branes in weak background fields, Nucl. Phys. B 573 (2000) 703 [hep-th/9910052] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    R. Minasian and A. Tomasiello, Variations on stability, Nucl. Phys. B 631 (2002) 43 [hep-th/0104041] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    D. Bak, N. Ohta and P.K. Townsend, The D2 SUSY zoo, JHEP 03 (2007) 013 [hep-th/0612101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, fifth ed., A. Jeffrey ed., Academic Press, U.S.A. (1994).Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Iosif Bena
    • 1
  • Johan Blåbäck
    • 1
  • Ruben Minasian
    • 1
  • Raffaele Savelli
    • 1
  1. 1.Institut de Physique ThéoriqueUniversité Paris Saclay, CEA, CNRSGif-sur-YvetteFrance

Personalised recommendations