Advertisement

Journal of High Energy Physics

, 2016:164 | Cite as

Boosting the charged Higgs search prospects using jet substructure at the LHC

  • Jinmian Li
  • Riley Patrick
  • Pankaj Sharma
  • Anthony G. Williams
Open Access
Regular Article - Theoretical Physics

Abstract

Charged Higgs bosons are predicted in variety of theoretically well-motivated new physics models with extended Higgs sectors. In this study, we focus on a type-II two Higgs doublet model (2HDM-II) and consider a heavy charged Higgs with its mass ranging from 500 GeV to 1 TeV as dictated by the b constraints which render M H ± > 480 GeV. We study the dominant production mode H ± t associated production with H ±W ± A being the dominant decay channel when the pseudoscalar A is considerably lighter. For such a heavy charged Higgs, both the decay products W ± and A are relatively boosted. In such a scenario, we apply the jet substructure analysis of tagging the fat pseudoscalar and W jets in order to eliminate the standard model background efficiently. We perform a detailed detector simulation for the signal and background processes at the 14 TeV LHC. We introduce various kinematical cuts to determine the signal significance for a number of benchmark points with charged Higgs boson mass from 500 GeV to 1 TeV in the W ± A decay channel. Finally we perform a multivariate analysis utilizing a boosted decision tree algorithm to optimize these significances.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Aoki, R. Guedes, S. Kanemura, S. Moretti, R. Santos and K. Yagyu, Light Charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Guedes, S. Moretti and R. Santos, Charged Higgs bosons in single top production at the LHC, JHEP 10 (2012) 119 [arXiv:1207.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.F. Gunion, H.E. Haber, F.E. Paige, W.-K. Tung and S.S.D. Willenbrock, Neutral and Charged Higgs Detection: Heavy Quark Fusion, Top Quark Mass Dependence and Rare Decays, Nucl. Phys. B 294 (1987) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.F. Gunion, Detecting the tb decays of a charged Higgs boson at a hadron supercollider, Phys. Lett. B 322 (1994) 125 [hep-ph/9312201] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    V.D. Barger, R.J.N. Phillips and D.P. Roy, Heavy charged Higgs signals at the LHC, Phys. Lett. B 324 (1994) 236 [hep-ph/9311372] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.J. Miller, S. Moretti, D.P. Roy and W.J. Stirling, Detecting heavy charged Higgs bosons at the CERN LHC with four b quark tags, Phys. Rev. D 61 (2000) 055011 [hep-ph/9906230] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Moretti and D.P. Roy, Detecting heavy charged Higgs bosons at the LHC with triple b tagging, Phys. Lett. B 470 (1999) 209 [hep-ph/9909435] [INSPIRE].
  11. [11]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  12. [12]
    A.G. Akeroyd et al., Prospects for charged Higgs searches at the LHC, arXiv:1607.01320 [INSPIRE].
  13. [13]
    K. Huitu, S. Kumar Rai, K. Rao, S.D. Rindani and P. Sharma, Probing top charged-Higgs production using top polarization at the Large Hadron Collider, JHEP 04 (2011) 026 [arXiv:1012.0527] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.M. Godbole, L. Hartgring, I. Niessen and C.D. White, Top polarisation studies in H t and Wt production, JHEP 01 (2012) 011 [arXiv:1111.0759] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S.D. Rindani, R. Santos and P. Sharma, Measuring the charged Higgs mass and distinguishing between models with top-quark observables, JHEP 11 (2013) 188 [arXiv:1307.1158] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    X. Gong, Z.-G. Si, S. Yang and Y.-J. Zheng, Determination of charged Higgs couplings at the LHC, Mod. Phys. Lett. A 29 (2014) 1430013 [arXiv:1404.1545] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    X. Gong, Z.-G. Si, S. Yang and Y.-j. Zheng, Top quark spin and Htb interaction in charged Higgs boson and top quark associated production at LHC, Phys. Rev. D 87 (2013) 035014 [arXiv:1210.7822] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Q.-H. Cao, X. Wan, X.-p. Wang and S.-h. Zhu, Searching for Charged Higgs Boson in Polarized Top Quark, Phys. Rev. D 87 (2013) 055022 [arXiv:1301.6608] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Moretti, R. Santos and P. Sharma, Optimising Charged Higgs Boson Searches at the Large Hadron Collider Across \( b\overline{b}{W}^{\pm } \) Final States, Phys. Lett. B 760 (2016) 697 [arXiv:1604.04965] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Arhrib, R. Benbrik and S. Moretti, Bosonic Decays of Charged Higgs Bosons in a 2HDM Type-I, arXiv:1607.02402 [INSPIRE].
  22. [22]
    B. Coleppa, F. Kling and S. Su, Charged Higgs search via AW ± /HW ± channel, JHEP 12 (2014) 148 [arXiv:1408.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Yang and Q.-S. Yan, Searching for Heavy Charged Higgs Boson with Jet Substructure at the LHC, JHEP 02 (2012) 074 [arXiv:1111.4530] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Z. Kang, J. Li, T. Li, D. Liu and J. Shu, Probing the CP-even Higgs sector via H 3H 2 H 1 in the natural next-to-minimal supersymmetric standard model, Phys. Rev. D 88 (2013) 015006 [arXiv:1301.0453] [INSPIRE].ADSGoogle Scholar
  25. [25]
    N. Chen, J. Li, Y. Liu and Z. Liu, LHC searches for the CP-odd Higgs by the jet substructure analysis, Phys. Rev. D 91 (2015) 075002 [arXiv:1410.4447] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Hajer, Y.-Y. Li, T. Liu and J.F.H. Shiu, Heavy Higgs Bosons at 14 TeV and 100 TeV, JHEP 11 (2015) 124 [arXiv:1504.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Casolino, T. Farooque, A. Juste, T. Liu and M. Spannowsky, Probing a light CP-odd scalar in di-top-associated production at the LHC, Eur. Phys. J. C 75 (2015) 498 [arXiv:1507.07004] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Conte, B. Fuks, J. Guo, J. Li and A.G. Williams, Investigating light NMSSM pseudoscalar states with boosted ditau tagging, JHEP 05 (2016) 100 [arXiv:1604.05394] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Goncalves and D. Lopez-Val, Pseudoscalar searches with dileptonic tops and jet substructure, Phys. Rev. D 94 (2016) 095005 [arXiv:1607.08614] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3: a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  35. [35]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. Krohn, M.D. Schwartz, M. Low and L.-T. Wang, Jet Cleansing: Pileup Removal at High Luminosity, Phys. Rev. D 90 (2014) 065020 [arXiv:1309.4777] [INSPIRE].ADSGoogle Scholar
  37. [37]
    ATLAS collaboration, Performance of b-Jet Identification in the ATLAS Experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE].
  38. [38]
    ATLAS collaboration, Boosted Higgs (\( b\overline{b} \) ) Boson Identification with the ATLAS Detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-039 (2016) [INSPIRE].
  39. [39]
    CMS collaboration, Performance of b tagging at \( \sqrt{s}=8 \) TeV in multijet, ttbar and boosted topology events, CMS-PAS-BTV-13-001 (2013) [INSPIRE].
  40. [40]
    CMS collaboration, Identification of double-b quark jets in boosted event topologies, CMS-PAS-BTV-15-002 (2016) [INSPIRE].
  41. [41]
    H. Voss, A. Höcker, J. Stelzer and F. Tegenfeldt, TMVA: Toolkit for Multivariate Data Analysis with ROOT, PoS(ACAT)040 [physics/07030309].
  42. [42]
    H.-J. Yang, B.P. Roe and J. Zhu, Studies of boosted decision trees for MiniBooNE particle identification, Nucl. Instrum. Meth. A 555 (2005) 370 [physics/0508045] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Jinmian Li
    • 1
    • 2
  • Riley Patrick
    • 1
  • Pankaj Sharma
    • 1
  • Anthony G. Williams
    • 1
  1. 1.Center of Excellence for Particle Physics at TerascaleUniversity of AdelaideAdelaideSouth Australia
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations