Journal of High Energy Physics

, 2016:164 | Cite as

Boosting the charged Higgs search prospects using jet substructure at the LHC

  • Jinmian Li
  • Riley Patrick
  • Pankaj Sharma
  • Anthony G. Williams
Open Access
Regular Article - Theoretical Physics


Charged Higgs bosons are predicted in variety of theoretically well-motivated new physics models with extended Higgs sectors. In this study, we focus on a type-II two Higgs doublet model (2HDM-II) and consider a heavy charged Higgs with its mass ranging from 500 GeV to 1 TeV as dictated by the b constraints which render M H ± > 480 GeV. We study the dominant production mode H ± t associated production with H ±W ± A being the dominant decay channel when the pseudoscalar A is considerably lighter. For such a heavy charged Higgs, both the decay products W ± and A are relatively boosted. In such a scenario, we apply the jet substructure analysis of tagging the fat pseudoscalar and W jets in order to eliminate the standard model background efficiently. We perform a detailed detector simulation for the signal and background processes at the 14 TeV LHC. We introduce various kinematical cuts to determine the signal significance for a number of benchmark points with charged Higgs boson mass from 500 GeV to 1 TeV in the W ± A decay channel. Finally we perform a multivariate analysis utilizing a boosted decision tree algorithm to optimize these significances.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Aoki, R. Guedes, S. Kanemura, S. Moretti, R. Santos and K. Yagyu, Light Charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Guedes, S. Moretti and R. Santos, Charged Higgs bosons in single top production at the LHC, JHEP 10 (2012) 119 [arXiv:1207.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.F. Gunion, H.E. Haber, F.E. Paige, W.-K. Tung and S.S.D. Willenbrock, Neutral and Charged Higgs Detection: Heavy Quark Fusion, Top Quark Mass Dependence and Rare Decays, Nucl. Phys. B 294 (1987) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.F. Gunion, Detecting the tb decays of a charged Higgs boson at a hadron supercollider, Phys. Lett. B 322 (1994) 125 [hep-ph/9312201] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    V.D. Barger, R.J.N. Phillips and D.P. Roy, Heavy charged Higgs signals at the LHC, Phys. Lett. B 324 (1994) 236 [hep-ph/9311372] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.J. Miller, S. Moretti, D.P. Roy and W.J. Stirling, Detecting heavy charged Higgs bosons at the CERN LHC with four b quark tags, Phys. Rev. D 61 (2000) 055011 [hep-ph/9906230] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Moretti and D.P. Roy, Detecting heavy charged Higgs bosons at the LHC with triple b tagging, Phys. Lett. B 470 (1999) 209 [hep-ph/9909435] [INSPIRE].
  11. [11]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  12. [12]
    A.G. Akeroyd et al., Prospects for charged Higgs searches at the LHC, arXiv:1607.01320 [INSPIRE].
  13. [13]
    K. Huitu, S. Kumar Rai, K. Rao, S.D. Rindani and P. Sharma, Probing top charged-Higgs production using top polarization at the Large Hadron Collider, JHEP 04 (2011) 026 [arXiv:1012.0527] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.M. Godbole, L. Hartgring, I. Niessen and C.D. White, Top polarisation studies in H t and Wt production, JHEP 01 (2012) 011 [arXiv:1111.0759] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S.D. Rindani, R. Santos and P. Sharma, Measuring the charged Higgs mass and distinguishing between models with top-quark observables, JHEP 11 (2013) 188 [arXiv:1307.1158] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    X. Gong, Z.-G. Si, S. Yang and Y.-J. Zheng, Determination of charged Higgs couplings at the LHC, Mod. Phys. Lett. A 29 (2014) 1430013 [arXiv:1404.1545] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    X. Gong, Z.-G. Si, S. Yang and Y.-j. Zheng, Top quark spin and Htb interaction in charged Higgs boson and top quark associated production at LHC, Phys. Rev. D 87 (2013) 035014 [arXiv:1210.7822] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Q.-H. Cao, X. Wan, X.-p. Wang and S.-h. Zhu, Searching for Charged Higgs Boson in Polarized Top Quark, Phys. Rev. D 87 (2013) 055022 [arXiv:1301.6608] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Moretti, R. Santos and P. Sharma, Optimising Charged Higgs Boson Searches at the Large Hadron Collider Across \( b\overline{b}{W}^{\pm } \) Final States, Phys. Lett. B 760 (2016) 697 [arXiv:1604.04965] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Arhrib, R. Benbrik and S. Moretti, Bosonic Decays of Charged Higgs Bosons in a 2HDM Type-I, arXiv:1607.02402 [INSPIRE].
  22. [22]
    B. Coleppa, F. Kling and S. Su, Charged Higgs search via AW ± /HW ± channel, JHEP 12 (2014) 148 [arXiv:1408.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Yang and Q.-S. Yan, Searching for Heavy Charged Higgs Boson with Jet Substructure at the LHC, JHEP 02 (2012) 074 [arXiv:1111.4530] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Z. Kang, J. Li, T. Li, D. Liu and J. Shu, Probing the CP-even Higgs sector via H 3H 2 H 1 in the natural next-to-minimal supersymmetric standard model, Phys. Rev. D 88 (2013) 015006 [arXiv:1301.0453] [INSPIRE].ADSGoogle Scholar
  25. [25]
    N. Chen, J. Li, Y. Liu and Z. Liu, LHC searches for the CP-odd Higgs by the jet substructure analysis, Phys. Rev. D 91 (2015) 075002 [arXiv:1410.4447] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Hajer, Y.-Y. Li, T. Liu and J.F.H. Shiu, Heavy Higgs Bosons at 14 TeV and 100 TeV, JHEP 11 (2015) 124 [arXiv:1504.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Casolino, T. Farooque, A. Juste, T. Liu and M. Spannowsky, Probing a light CP-odd scalar in di-top-associated production at the LHC, Eur. Phys. J. C 75 (2015) 498 [arXiv:1507.07004] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Conte, B. Fuks, J. Guo, J. Li and A.G. Williams, Investigating light NMSSM pseudoscalar states with boosted ditau tagging, JHEP 05 (2016) 100 [arXiv:1604.05394] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Goncalves and D. Lopez-Val, Pseudoscalar searches with dileptonic tops and jet substructure, Phys. Rev. D 94 (2016) 095005 [arXiv:1607.08614] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3: a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  35. [35]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. Krohn, M.D. Schwartz, M. Low and L.-T. Wang, Jet Cleansing: Pileup Removal at High Luminosity, Phys. Rev. D 90 (2014) 065020 [arXiv:1309.4777] [INSPIRE].ADSGoogle Scholar
  37. [37]
    ATLAS collaboration, Performance of b-Jet Identification in the ATLAS Experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE].
  38. [38]
    ATLAS collaboration, Boosted Higgs (\( b\overline{b} \) ) Boson Identification with the ATLAS Detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-039 (2016) [INSPIRE].
  39. [39]
    CMS collaboration, Performance of b tagging at \( \sqrt{s}=8 \) TeV in multijet, ttbar and boosted topology events, CMS-PAS-BTV-13-001 (2013) [INSPIRE].
  40. [40]
    CMS collaboration, Identification of double-b quark jets in boosted event topologies, CMS-PAS-BTV-15-002 (2016) [INSPIRE].
  41. [41]
    H. Voss, A. Höcker, J. Stelzer and F. Tegenfeldt, TMVA: Toolkit for Multivariate Data Analysis with ROOT, PoS(ACAT)040 [physics/07030309].
  42. [42]
    H.-J. Yang, B.P. Roe and J. Zhu, Studies of boosted decision trees for MiniBooNE particle identification, Nucl. Instrum. Meth. A 555 (2005) 370 [physics/0508045] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Jinmian Li
    • 1
    • 2
  • Riley Patrick
    • 1
  • Pankaj Sharma
    • 1
  • Anthony G. Williams
    • 1
  1. 1.Center of Excellence for Particle Physics at TerascaleUniversity of AdelaideAdelaideSouth Australia
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations