Advertisement

Journal of High Energy Physics

, 2016:124 | Cite as

Implications of a electroweak triplet scalar leptoquark on the ultra-high energy neutrino events at IceCube

  • Nicolas Mileo
  • Alejandro de la Puente
  • Alejandro Szynkman
Open Access
Regular Article - Theoretical Physics

Abstract

We study the production of scalar leptoquarks at IceCube, in particular, a particle transforming as a triplet under the weak interaction. The existence of electroweak-triplet scalars is highly motivated by models of grand unification and also within radiative seesaw models for neutrino mass generation. In our framework, we extend the Standard Model by a single colored electroweak-triplet scalar leptoquark and analyze its implications on the excess of ultra-high energy neutrino events observed by the IceCube collaboration. We consider only couplings between the leptoquark to first generation of quarks and first and second generations of leptons, and carry out a statistical analysis to determine the parameters that best describe the IceCube data as well as set 95% CL upper bounds. We analyze whether this study is still consistent with most up-to-date LHC data and various low energy observables.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    IceCube collaboration, M.G. Aartsen et al., The IceCube Neutrino ObservatoryContributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors, arXiv:1510.05223 [INSPIRE].
  2. [2]
    L.A. Anchordoqui, C.A. Garcia Canal, H. Goldberg, D. Gomez Dumm and F. Halzen, Probing leptoquark production at IceCube, Phys. Rev. D 74 (2006) 125021 [hep-ph/0609214] [INSPIRE].
  3. [3]
    V. Barger and W.-Y. Keung, Superheavy Particle Origin of IceCube PeV Neutrino Events, Phys. Lett. B 727 (2013) 190 [arXiv:1305.6907] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. Dutta, Y. Gao, T. Li, C. Rott and L.E. Strigari, Leptoquark implication from the CMS and IceCube experiments, Phys. Rev. D 91 (2015) 125015 [arXiv:1505.00028] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C.-Y. Chen, P.S. Bhupal Dev and A. Soni, Standard model explanation of the ultrahigh energy neutrino events at IceCube, Phys. Rev. D 89 (2014) 033012 [arXiv:1309.1764] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Laha, J.F. Beacom, B. Dasgupta, S. Horiuchi and K. Murase, Demystifying the PeV Cascades in IceCube: Less (Energy) is More (Events), Phys. Rev. D 88 (2013) 043009 [arXiv:1306.2309] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D 8 (1973) 1240 [INSPIRE].ADSGoogle Scholar
  8. [8]
    H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  10. [10]
    S.M. Barr, A New Symmetry Breaking Pattern for SO(10) and Proton Decay, Phys. Lett. B 112 (1982) 219 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. De Rujula, H. Georgi and S.L. Glashow, Flavor goniometry by proton decay, Phys. Rev. Lett. 45 (1980) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.P. Derendinger, J.E. Kim and D.V. Nanopoulos, Anti-SU(5), Phys. Lett. B 139 (1984) 170 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, Supersymmetric Flipped SU(5) Revitalized, Phys. Lett. B 194 (1987) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in Lepton-Quark Collisions, Phys. Lett. B 191 (1987) 442 [Erratum ibid. B 448 (1999) 320] [INSPIRE].
  15. [15]
    U.K. Dey and S. Mohanty, Constraints on Leptoquark Models from IceCube Data, JHEP 04 (2016) 187 [arXiv:1505.01037] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    CMS collaboration, Search for physics beyond the standard model in events with two opposite-sign same-flavor leptons, jets and missing transverse energy in pp collisions at \( \sqrt{s}=8 \) TeV,CMS-PAS-SUS-12-019.
  17. [17]
    F.S. Queiroz, K. Sinha and A. Strumia, Leptoquarks, Dark Matter and Anomalous LHC Events, Phys. Rev. D 91 (2015) 035006 [arXiv:1409.6301] [INSPIRE].ADSGoogle Scholar
  18. [18]
    B. Allanach, A. Alves, F.S. Queiroz, K. Sinha and A. Strumia, Interpreting the CMS Open image in new window Excess with a Leptoquark Model, Phys. Rev. D 92 (2015) 055023 [arXiv:1501.03494] [INSPIRE].
  19. [19]
    J.M. Arnold, B. Fornal and M.B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev. D 88 (2013) 035009 [arXiv:1304.6119] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the R D(∗) , R K and (g − 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Sahoo and R. Mohanta, Leptoquark effects on \( b\to s\nu \overline{\nu} \) and BKl + l decay processes, New J. Phys. 18 (2016) 013032 [arXiv:1509.06248] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Sahoo and R. Mohanta, Lepton flavor violating B meson decays via a scalar leptoquark, Phys. Rev. D 93 (2016) 114001 [arXiv:1512.04657] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Sahoo and R. Mohanta, Scalar Leptoquarks and the Rare B Meson Decays, Springer Proc. Phys. 174 (2016) 221.CrossRefGoogle Scholar
  24. [24]
    S. Sahoo and R. Mohanta, Effects of scalar leptoquark on semileptonic Λb decays, New J. Phys. 18 (2016) 093051 [arXiv:1607.04449] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Can scalar leptoquarks explain the f D s puzzle?, Phys. Lett. B 682 (2009) 67 [arXiv:0906.5585] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Carena, D. Choudhury, S. Lola and C. Quigg, Manifestations of R-parity violation in ultrahigh-energy neutrino interactions, Phys. Rev. D 58 (1998) 095003 [hep-ph/9804380] [INSPIRE].
  27. [27]
    P.S.B. Dev, D.K. Ghosh and W. Rodejohann, R-parity Violating Supersymmetry at IceCube, Phys. Lett. B 762 (2016) 116 [arXiv:1605.09743] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J.N. Ng and A. de la Puente, Top Quark as a Dark Portal and Neutrino Mass Generation, Phys. Lett. B 727 (2013) 204 [arXiv:1307.2606] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.N. Ng and A. de la Puente, Probing Radiative Neutrino Mass Generation through Monotop Production, Phys. Rev. D 90 (2014) 095018 [arXiv:1404.1415] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.M. Barr and X. Calmet, Observable Proton Decay from Planck Scale Physics, Phys. Rev. D 86 (2012) 116010 [arXiv:1203.5694] [INSPIRE].ADSGoogle Scholar
  32. [32]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  33. [33]
    CMS collaboration, Search for Lepton-Flavour-Violating Decays of the Higgs Boson, Phys. Lett. B 749 (2015) 337 [arXiv:1502.07400] [INSPIRE].
  34. [34]
    I. de Medeiros Varzielas and G. Hiller, Clues for flavor from rare lepton and quark decays, JHEP 06 (2015) 072 [arXiv:1503.01084] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Ultrahigh-energy neutrino interactions, Astropart. Phys. 5 (1996) 81 [hep-ph/9512364] [INSPIRE].
  36. [36]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  38. [38]
    T.A. Gabriel, D.E. Groom, P.K. Job, N.V. Mokhov and G.R. Stevenson, Energy dependence of hadronic activity, Nucl. Instrum. Meth. A 338 (1994) 336 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    IceCube collaboration, M.G. Aartsen et al., Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 (2013) 1242856 [arXiv:1311.5238] [INSPIRE].
  40. [40]
    IceCube collaboration, M.G. Aartsen et al., Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube, Phys. Rev. Lett. 114 (2015) 171102 [arXiv:1502.03376] [INSPIRE].
  41. [41]
    IceCube collaboration, M.G. Aartsen et al., A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube, Astrophys. J. 809 (2015) 98 [arXiv:1507.03991] [INSPIRE].
  42. [42]
    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
  43. [43]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  44. [44]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  46. [46]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  47. [47]
    F. Giordano, Search for Heavy Majorana Neutrinos in μ ± μ ± + jets and e ± e ± + jets Events in pp Collisions at \( \sqrt{s}=7 \) TeV, CERN-THESIS-2013-024, CMS-TS-2013-047.
  48. [48]
    J.N. Ng, A. de la Puente and B. W.-P. Pan, Search for Heavy Right-Handed Neutrinos at the LHC and Beyond in the Same-Sign Same-Flavor Leptons Final State, JHEP 12 (2015) 172 [arXiv:1505.01934] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  51. [51]
    ATLAS collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052008 [arXiv:1407.0608] [INSPIRE].
  52. [52]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  53. [53]
    ATLAS collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 06 (2014) 124 [arXiv:1403.4853] [INSPIRE].
  54. [54]
    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].
  55. [55]
    ATLAS collaboration, Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets and large missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 318 [arXiv:1503.03290] [INSPIRE].
  56. [56]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20/fb of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).
  57. [57]
    ATLAS collaboration, Searches for scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 5 [arXiv:1508.04735] [INSPIRE].
  58. [58]
    CMS collaboration, Search for pair production of first and second generation leptoquarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 032004 [arXiv:1509.03744] [INSPIRE].
  59. [59]
    ATLAS collaboration, Search for scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, New J. Phys. 18 (2016) 093016 [arXiv:1605.06035] [INSPIRE].
  60. [60]
    CMS collaboration, Search for pair-production of second-generation scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the CMS detector, CMS-PAS-EXO-16-007.
  61. [61]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  62. [62]
    Muon g-2 collaboration, G.W. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [INSPIRE].
  63. [63]
    Muon g-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  64. [64]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  65. [65]
    J. Guena, M. Lintz and M.A. Bouchiat, Measurement of the parity violating 6S-7S transition amplitude in cesium achieved within 2 × 10−13 atomic-unit accuracy by stimulated-emission detection, Phys. Rev. A 71 (2005) 042108 [physics/0412017] [INSPIRE].
  66. [66]
    S.G. Porsev, K. Beloy and A. Derevianko, Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, Phys. Rev. Lett. 102 (2009) 181601 [arXiv:0902.0335] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Nicolas Mileo
    • 1
  • Alejandro de la Puente
    • 2
  • Alejandro Szynkman
    • 1
  1. 1.IFLP, CONICET — Departamento de FísicaUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Ottawa-Carleton Institute for PhysicsCarleton UniversityOttawaCanada

Personalised recommendations