Journal of High Energy Physics

, 2016:113 | Cite as

Spectra of certain holographic ABJM Wilson loops in higher rank representations

  • Wolfgang Mück
  • Leopoldo A. Pando Zayas
  • Vimal Rathee
Open Access
Regular Article - Theoretical Physics


The holographic configurations dual to Wilson loops in higher rank representations in the ABJM theory are described by branes with electric flux along their world volumes. In particular, D2 and D6 branes with electric flux play a central role as potential dual to totally symmetric and totally antisymmetric representations, respectively. We compute the spectra of excitations of these brane configurations in both, the bosonic and fermionic sectors. We highlight a number of aspects that distinguish these configurations from their D3 and D5 cousins including new peculiar mixing terms in the fluctuations. We neatly organize the spectrum of fluctuations into the corresponding supermultiplets.


AdS-CFT Correspondence D-branes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A. Klemm, M. Mariño, M. Schiereck and M. Soroush, Aharony-Bergman-Jafferis-Maldacena Wilson loops in the Fermi gas approach, Z. Naturforsch. A 68 (2013) 178 [arXiv:1207.0611] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in N = 4 super Yang-Mills theory, JHEP 08 (1999) 013 [hep-th/9903042] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5 : semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Sakaguchi and K. Yoshida, A semiclassical string description of Wilson loop with local operators, Nucl. Phys. B 798 (2008) 72 [arXiv:0709.4187] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Kristjansen and Y. Makeenko, More about one-loop effective action of open superstring in AdS 5 × S 5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in AdS 5 × S 5, JHEP 02 (2016) 105 [arXiv:1512.00841] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Faraggi, L.A. Pando Zayas, G.A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Faraggi and L.A. Pando Zayas, The spectrum of excitations of holographic Wilson loops, JHEP 05 (2011) 018 [arXiv:1101.5145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Faraggi, W. Mueck and L.A. Pando Zayas, One-loop effective action of the holographic antisymmetric Wilson loop, Phys. Rev. D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].ADSGoogle Scholar
  13. [13]
    E.I. Buchbinder and A.A. Tseytlin, 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling, Phys. Rev. D 89 (2014) 126008 [arXiv:1404.4952] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Faraggi, J.T. Liu, L.A. Pando Zayas and G. Zhang, One-loop structure of higher rank Wilson loops in AdS/CFT, Phys. Lett. B 740 (2015) 218 [arXiv:1409.3187] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    B.E.W. Nilsson and C.N. Pope, Hopf fibration of eleven-dimensional supergravity, Class. Quant. Grav. 1 (1984) 499 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    L. Martucci, J. Rosseel, D. Van den Bleeken and A. Van Proeyen, Dirac actions for D-branes on backgrounds with fluxes, Class. Quant. Grav. 22 (2005) 2745 [hep-th/0504041] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    P. Benincasa and A.V. Ramallo, Fermionic impurities in Chern-Simons-matter theories, JHEP 02 (2012) 076 [arXiv:1112.4669] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    J. Gomis and F. Passerini, Wilson loops as D3-branes, JHEP 01 (2007) 097 [hep-th/0612022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N. Drukker and D. Trancanelli, A supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, New supersymmetric Wilson loops in ABJ(M) theories, Phys. Lett. B 718 (2012) 615 [arXiv:1209.4032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    H. Ouyang, J.-B. Wu and J.-J. Zhang, Novel BPS Wilson loops in three-dimensional quiver Chern-Simons-matter theories, Phys. Lett. B 753 (2016) 215 [arXiv:1510.05475] [INSPIRE].CrossRefMATHGoogle Scholar
  27. [27]
    H. Ouyang, J.-B. Wu and J.-J. Zhang, Construction and classification of novel BPS Wilson loops in quiver Chern-Simons-matter theories, Nucl. Phys. B 910 (2016) 496 [arXiv:1511.02967] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    E. Witten, Fermion quantum numbers in Kaluza-Klein theory, in Shelter Island II, Shelter Island, New York U.S.A. June 1–2 1983 [INSPIRE].
  29. [29]
    A. Ceresole, G. Dall’Agata and R. D’Auria, KK spectroscopy of type IIB supergravity on AdS 5 × T 11, JHEP 11 (1999) 009 [hep-th/9907216] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    A. Van Proeyen, Tools for supersymmetry, in Proceedings, Spring School on Quantum Field Theory. Supersymmetries and Superstrings, volume 9, (1999), pg. I.1 [Ann. U. Craiova Phys. 9 (1999) 1] [hep-th/9910030] [INSPIRE].
  31. [31]
    M. Sakaguchi, H. Shin and K. Yoshida, Semiclassical analysis of M2-brane in AdS 4 × S 7 /Z k, JHEP 12 (2010) 012 [arXiv:1007.3354] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson loops in superconformal Chern-Simons theory and fundamental strings in anti-de Sitter supergravity dual, JHEP 03 (2009) 127 [arXiv:0809.3786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    B. Chen and J.-B. Wu, Supersymmetric Wilson loops in N = 6 super Chern-Simons-matter theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M. Günaydin, G. Sierra and P.K. Townsend, The unitary supermultiplets of d = 3 anti-de Sitter and d = 2 conformal superalgebras, Nucl. Phys. B 274 (1986) 429 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    H. Kim, N. Kim and J. Hun Lee, One-loop corrections to holographic Wilson loop in AdS 4 × CP 3, J. Korean Phys. Soc. 61 (2012) 713 [arXiv:1203.6343] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Aguilera-Damia, D.H. Correa and G.A. Silva, Semiclassical partition function for strings dual to Wilson loops with small cusps in ABJM, JHEP 03 (2015) 002 [arXiv:1412.4084] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson loops in arbitrary representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Cvetič, H. Lü and C.N. Pope, Consistent warped space Kaluza-Klein reductions, half maximal gauged supergravities and CP n constructions, Nucl. Phys. B 597 (2001) 172 [hep-th/0007109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    H.A. Schmitt, P. Halse, B.R. Barrett and A.B. Balantekin, Positive discrete series representations of the noncompact superalgebra Osp(4/2, R), J. Math. Phys. 30 (1989) 2714 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : predictions on N = 1 SCFT’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    A. Salam and J.A. Strathdee, On Kaluza-Klein theory, Annals Phys. 141 (1982) 316 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P. van Nieuwenhuizen, General theory of coset manifolds and antisymetric tensors applied to Kaluza-Klein supergravity, in Proceedings, Supersymmetry and Supergravity 84, Trieste Italy (1984), pg. 239 [ITP-SB-84-57].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Ettore Pancini”Università degli Studi di Napoli “Federico II”NapoliItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di NapoliNapoliItaly
  3. 3.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  4. 4.Michigan Center for Theoretical Physics, Randall Laboratory of PhysicsThe University of MichiganAnn ArborU.S.A.

Personalised recommendations