Advertisement

Journal of High Energy Physics

, 2016:101 | Cite as

Integrability of orbifold ABJM theories

  • Nan Bai
  • Hui-Huang Chen
  • Xiao-Chen Ding
  • De-Sheng Li
  • Jun-Bao Wu
Open Access
Regular Article - Theoretical Physics

Abstract

Integrable structure has played a very important role in the study of various non-perturbative aspects of planar Aharony-Bergman-Jafferis-Maldacena (ABJM) theories. In this paper, we showed that this remarkable structure survives after orbifold operation with discrete group Γ < SU(4) R × U(1) b . For general Γ(≃ ℤ n ), we prove the integrability in the scalar sector at the planar two-loop order and get the Bethe ansatz equations (BAEs). The eigenvalues of the anomalous dimension matrix are also obtained. For Γ < SU(4), two-loop all-sector and all-loop BAEs are proposed. Supersymmetric orbifolds are discussed in this framework.

Keywords

AdS-CFT Correspondence Bethe Ansatz 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    D. Bak and S.-J. Rey, Integrable spin chain in superconformal Chern-Simons theory, JHEP 10 (2008) 053 [arXiv:0807.2063] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    R. Roiban, On spin chains and field theories, JHEP 09 (2004) 023 [hep-th/0312218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Berenstein and S.A. Cherkis, Deformations of N = 4 SYM and integrable spin chain models, Nucl. Phys. B 702 (2004) 49 [hep-th/0405215] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    N. Beisert and R. Roiban, Beauty and the twist: the Bethe ansatz for twisted N = 4 SYM, JHEP 08 (2005) 039 [hep-th/0505187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Mansson and K. Zoubos, Quantum symmetries and marginal deformations, JHEP 10 (2010) 043 [arXiv:0811.3755] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    X.-J. Wang and Y.-S. Wu, Integrable spin chain and operator mixing in N = 1, 2 supersymmetric theories, Nucl. Phys. B 683 (2004) 363 [hep-th/0311073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    K. Ideguchi, Semiclassical strings on AdS 5 × S 5/Z M and operators in orbifold field theories, JHEP 09 (2004) 008 [hep-th/0408014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    N. Beisert and R. Roiban, The Bethe ansatz for Z S orbifolds of N = 4 super Yang-Mills theory, JHEP 11 (2005) 037 [hep-th/0510209] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Solovyov, Bethe ansatz equations for general orbifolds of N = 4 SYM, JHEP 04 (2008) 013 [arXiv:0711.1697] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, Twisting the mirror TBA, JHEP 02 (2011) 025 [arXiv:1009.4118] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  19. [19]
    M. de Leeuw and S.J. van Tongeren, The spectral problem for strings on twisted AdS 5 × S 5, Nucl. Phys. B 860 (2012) 339 [arXiv:1201.1451] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    B. Chen, X.-J. Wang and Y.-S. Wu, Integrable open spin chain in super Yang-Mills and the plane wave/SYM duality, JHEP 02 (2004) 029 [hep-th/0401016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    B. Chen, X.-J. Wang and Y.-S. Wu, Open spin chain and open spinning string, Phys. Lett. B 591 (2004) 170 [hep-th/0403004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    T. Erler and N. Mann, Integrable open spin chains and the doubling trick in N = 2 SYM with fundamental matter, JHEP 01 (2006) 131 [hep-th/0508064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Zoubos, Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S.J. van Tongeren, Integrability of the AdS 5 × S 5 superstring and its deformations, J. Phys. A 47 (2014) 433001 [arXiv:1310.4854] [INSPIRE].MATHGoogle Scholar
  25. [25]
    S. He and J.-B. Wu, Note on integrability of marginally deformed ABJ(M) theories, JHEP 04 (2013) 012 [Erratum ibid. 04 (2016) 139] [arXiv:1302.2208] [INSPIRE].
  26. [26]
    E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    H.-H. Chen, P. Liu and J.-B. Wu, Y-system for γ-deformed ABJM theory, arXiv:1611.02804 [INSPIRE].
  28. [28]
    J. Caetano, O. Gurdogan and V. Kazakov, in preparation.Google Scholar
  29. [29]
    V. Kazaokov, New integrable matrix field theories from strongly twisted AdS/CFT, talk given at 56th Cracow of Theoretical Physics: a Panorama of Holography, http://th-www.if.uj.edu.pl/school/2016/talks/kazakov.pdf, Zakopane Poland May 26-27 2016.
  30. [30]
    O. Gurdogan and V. Kazakov, New integrable non-gauge 4D QFTs from strongly deformed planar N = 4 SYM, arXiv:1512.06704 [INSPIRE].
  31. [31]
    C. Sieg and M. Wilhelm, On a CFT limit of planar γ i -deformed N = 4 SYM theory, Phys. Lett. B 756 (2016) 118 [arXiv:1602.05817] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    M. Bershadsky, Z. Kakushadze and C. Vafa, String expansion as large-N expansion of gauge theories, Nucl. Phys. B 523 (1998) 59 [hep-th/9803076] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M. Bershadsky and A. Johansen, Large-N limit of orbifold field theories, Nucl. Phys. B 536 (1998) 141 [hep-th/9803249] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and AdS 4/CFT 3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    S. Terashima and F. Yagi, Orbifolding the membrane action, JHEP 12 (2008) 041 [arXiv:0807.0368] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    Y. Imamura and S. Yokoyama, N = 4 Chern-Simons theories and wrapped M-branes in their gravity duals, Prog. Theor. Phys. 121 (2009) 915 [arXiv:0812.1331] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    D. Berenstein and M. Romo, Aspects of ABJM orbifolds, Adv. Theor. Math. Phys. 14 (2010) 1717 [arXiv:0909.2856] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A. Zabrodin, Backlund transformations for difference Hirota equation and supersymmetric Bethe ansatz, arXiv:0705.4006 [INSPIRE].
  40. [40]
    P.P. Kulish and N. Yu. Reshetikhin, Diagonalization of GL(N) invariant transfer matrices and quantum N wave system (Lee model), J. Phys. A 16 (1983) L591 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  41. [41]
    N. Beiseit, Integrability in QFT and AdS/CFT, lecture notes, http://edu.itp.phys.ethz.ch/hs14/14HSInt/IntAdSCFT14Notes.pdf, (2014), ETH Zurich, Zurich Switzerland pg. 4.15.
  42. [42]
    N. Gromov and P. Vieira, The all loop AdS 4/CFT 3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    D. Gaiotto, S. Giombi and X. Yin, Spin chains in N = 6 superconformal Chern-Simons-matter theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of N = 6 superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    T. Nishioka and T. Takayanagi, On type IIA Penrose limit and N = 6 Chern-Simons theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    N. Gromov and G. Sizov, Exact slope and interpolating functions in N = 6 supersymmetric Chern-Simons theory, Phys. Rev. Lett. 113 (2014) 121601 [arXiv:1403.1894] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Gromov and P. Vieira, Complete 1-loop test of AdS/CFT, JHEP 04 (2008) 046 [arXiv:0709.3487] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    M. Beccaria and G. Macorini, Y-system for Z S orbifolds of N = 4 SYM, JHEP 06 (2011) 004 [Erratum ibid. 01 (2012) 112] [arXiv:1104.0883] [INSPIRE].
  51. [51]
    J.A. Minahan, W. Schulgin and K. Zarembo, Two loop integrability for Chern-Simons theories with N = 6 supersymmetry, JHEP 03 (2009) 057 [arXiv:0901.1142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Nan Bai
    • 1
  • Hui-Huang Chen
    • 1
  • Xiao-Chen Ding
    • 2
  • De-Sheng Li
    • 1
  • Jun-Bao Wu
    • 1
    • 3
    • 4
    • 5
  1. 1.Institute of High Energy Physics and Theoretical Physics Center for Science FacilitiesChinese Academy of SciencesBeijingP.R. China
  2. 2.School of Mathematical SciencesCapital Normal UniversityBeijingP.R. China
  3. 3.School of PhysicsBeihang UniversityBeijingP.R. China
  4. 4.Center for High Energy PhysicsPeking UniversityBeijingP.R. China
  5. 5.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations