Advertisement

Journal of High Energy Physics

, 2016:86 | Cite as

Connected, disconnected and strange quark contributions to HVP

  • Johan Bijnens
  • Johan Relefors
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of −1/10 derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.

Keywords

Chiral Lagrangians Lattice QCD Precision QED 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  2. [2]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. D’Ambrosio et al., Proceedings, Workshop on Flavour changing and conserving processes 2015 (FCCP2015): Anacapri, Capri Island, Italy, September 10-12, 2015, EPJ Web Conf. 118 (2016) [INSPIRE].
  4. [4]
    T. Blum, Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 91 (2003) 052001 [hep-lat/0212018] [INSPIRE].
  5. [5]
    H. Wittig, Hadronic contributions to the muon g − 2 from lattice QCD, plenary talk at 34th annual International Symposium on Lattice Field Theory (Lattice 2016), July 24-30, Southampton, U.K. (2016).Google Scholar
  6. [6]
    M. Della Morte and A. Juttner, Quark disconnected diagrams in chiral perturbation theory, JHEP 11 (2010) 154 [arXiv:1009.3783] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    J. Bijnens and J. Relefors, Vector two-point functions in finite volume using partially quenched chiral perturbation theory, to be published.Google Scholar
  8. [8]
    C. Bouchiat and L. Michel, La résonance dans la diffusion méson π-méson π et le moment magnétique anormal du méson μ, J. Phys. Radium 22 (1961) 121.CrossRefGoogle Scholar
  9. [9]
    L. Durand, Pionic contributions to the magnetic moment of the muon, Phys. Rev. 128 (1962) 441 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Weinberg, Phenomenological lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Bijnens, G. Colangelo and G. Ecker, The mesonic chiral lagrangian of order p 6, JHEP 02 (1999) 020 [hep-ph/9902437] [INSPIRE].
  14. [14]
    J. Bijnens, G. Colangelo and G. Ecker, Renormalization of chiral perturbation theory to order p 6, Annals Phys. 280 (2000) 100 [hep-ph/9907333] [INSPIRE].
  15. [15]
    P. Herrera-Siklody, J.I. Latorre, P. Pascual and J. Taron, Chiral effective Lagrangian in the large-N c limit: The Nonet case, Nucl. Phys. B 497 (1997) 345 [hep-ph/9610549] [INSPIRE].
  16. [16]
    S.-Z. Jiang, F.-J. Ge and Q. Wang, Full pseudoscalar mesonic chiral Lagrangian at p 6 order under the unitary group, Phys. Rev. D 89 (2014) 074048 [arXiv:1401.0317] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Golowich and J. Kambor, Two loop analysis of vector current propagators in chiral perturbation theory, Nucl. Phys. B 447 (1995) 373 [hep-ph/9501318] [INSPIRE].
  18. [18]
    G. Amoros, J. Bijnens and P. Talavera, Two point functions at two loops in three flavor chiral perturbation theory, Nucl. Phys. B 568 (2000) 319 [hep-ph/9907264] [INSPIRE].
  19. [19]
    A. Francis, B. Jaeger, H.B. Meyer and H. Wittig, A new representation of the Adler function for lattice QCD, Phys. Rev. D 88 (2013) 054502 [arXiv:1306.2532] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Chakraborty, C.T.H. Davies, J. Koponen, G.P. Lepage, M.J. Peardon and S.M. Ryan, Estimate of the hadronic vacuum polarization disconnected contribution to the anomalous magnetic moment of the muon from lattice QCD, Phys. Rev. D 93 (2016) 074509 [arXiv:1512.03270] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Bijnens and G. Ecker, Mesonic low-energy constants, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 [arXiv:1405.6488] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Bijnens and P. Talavera, Pion and kaon electromagnetic form-factors, JHEP 03 (2002) 046 [hep-ph/0203049] [INSPIRE].
  23. [23]
    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral lagrangians for massive spin 1 fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Golterman, K. Maltman and S. Peris, New strategy for the lattice evaluation of the leading order hadronic contribution to (g − 2)μ, Phys. Rev. D 90 (2014) 074508 [arXiv:1405.2389] [INSPIRE].ADSGoogle Scholar
  26. [26]
    HPQCD collaboration, B. Chakraborty et al., Strange and charm quark contributions to the anomalous magnetic moment of the muon, Phys. Rev. D 89 (2014) 114501 [arXiv:1403.1778] [INSPIRE].
  27. [27]
    M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, A BHLS model based moment analysis of muon g − 2 and its use for lattice QCD evaluations of a μhad, arXiv:1605.04474 [INSPIRE].
  28. [28]
    K. Miura, Moments of the hadron vacuum polarization at the physical point, 34th annual International Symposium on Lattice Field Theory (Lattice 2016), July 24-30, Southampton, U.K. (2016).Google Scholar
  29. [29]
    B. Chakraborty, C.T.H. Davies, P.G. de Oliviera, J. Koponen and G.P. Lepage, The hadronic vacuum polarization contribution to a μ from full lattice QCD, arXiv:1601.03071 [INSPIRE].
  30. [30]
    T. Blum et al., Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 116 (2016) 232002 [arXiv:1512.09054] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    RBC/UKQCD collaboration, T. Blum et al., Lattice calculation of the leading strange quark-connected contribution to the muon g − 2, JHEP 04 (2016) 063 [arXiv:1602.01767] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations