Advertisement

Journal of High Energy Physics

, 2016:82 | Cite as

Unification and new particles at the LHC

  • Nima Arkani-Hamed
  • Raffaele Tito D’Agnolo
  • Matthew Low
  • David Pinner
Open Access
Regular Article - Theoretical Physics

Abstract

Precision gauge coupling unification is one of the primary quantitative successes of low energy or split supersymmetry. Preserving this success puts severe restrictions on possible matter and gauge sectors that might appear at collider-accessible energies. In this work we enumerate new gauge sectors which are compatible with unification, consisting of horizontal gauge groups acting on vector-like matter charged under the Standard Model. Interestingly, almost all of these theories are in the supersymmetric conformal window at high energies and confine quickly after the superpartners are decoupled. For a range of scalar masses compatible with both moderately tuned and minimally split supersymmetry, the confining dynamics happen at the multi-TeV scale, leading to a spectrum of multiple spin-0 and spin-1 resonances accessible to the LHC, with unusual quantum numbers and striking decay patterns.

Keywords

Beyond Standard Model GUT Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K.R. Dienes, String theory and the path to unification: A review of recent developments, Phys. Rept. 287 (1997) 447 [hep-th/9602045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  4. [4]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, in proceedings of 11th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY 2003), Tucson, Arizona, 5-10 June 2003, hep-ph/0306127 [INSPIRE].
  5. [5]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].
  7. [7]
    N. Arkani-Hamed, A. Delgado and G.F. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].
  8. [8]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].
  10. [10]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].
  11. [11]
    T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].
  12. [12]
    B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4-D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].
  13. [13]
    E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs Mass and Unnatural Supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: Mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Kilic, T. Okui and R. Sundrum, Vectorlike Confinement at the LHC, JHEP 02 (2010) 018 [arXiv:0906.0577] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    K.A. Intriligator and P. Pouliot, Exact superpotentials, quantum vacua and duality in supersymmetric SP (N c) gauge theories, Phys. Lett. B 353 (1995) 471 [hep-th/9505006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Masip, R. Muñoz-Tapia and A. Pomarol, Limits on the mass of the lightest Higgs in supersymmetric models, Phys. Rev. D 57 (1998) R5340 [hep-ph/9801437] [INSPIRE].
  20. [20]
    J.L. Jones, Gauge Coupling Unification in MSSM + 5 Flavors, Phys. Rev. D 79 (2009) 075009 [arXiv:0812.2106] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S.P. Martin, Quirks in supersymmetry with gauge coupling unification, Phys. Rev. D 83 (2011) 035019 [arXiv:1012.2072] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Karavirta, J. Rantaharju, K. Rummukainen and K. Tuominen, Determining the conformal window: SU(2) gauge theory with N f = 4, 6 and 10 fermion flavours, JHEP 05 (2012) 003 [arXiv:1111.4104] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C.H. Wong, The running coupling of 8 flavors and 3 colors, JHEP 06 (2015) 019 [arXiv:1503.01132] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T.A. Ryttov and F. Sannino, Conformal Windows of SU(N ) Gauge Theories, Higher Dimensional Representations and The Size of The Unparticle World, Phys. Rev. D 76 (2007)105004 [arXiv:0707.3166] [INSPIRE].
  25. [25]
    F. Sannino, Conformal Windows of Sp(2N ) and SO(N ) Gauge Theories, Phys. Rev. D 79 (2009) 096007 [arXiv:0902.3494] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M.E. Peskin, The Alignment of the Vacuum in Theories of Technicolor, Nucl. Phys. B 175 (1980) 197 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Georgi, Generalized dimensional analysis, Phys. Lett. B 298 (1993) 187 [hep-ph/9207278] [INSPIRE].
  28. [28]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
  29. [29]
    G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A.M. Baldini et al., MEG Upgrade Proposal, arXiv:1301.7225 [INSPIRE].
  31. [31]
    Mu2e collaboration, L. Bartoszek et al., Mu2e Technical Design Report, arXiv:1501.05241 [INSPIRE].
  32. [32]
    A. de Gouvêa and P. Vogel, Lepton Flavor and Number Conservation and Physics Beyond the Standard Model, Prog. Part. Nucl. Phys. 71 (2013) 75 [arXiv:1303.4097] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Ishiwata, Z. Ligeti and M.B. Wise, New Vector-Like Fermions and Flavor Physics, JHEP 10 (2015) 027 [arXiv:1506.03484] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    CMS collaboration, Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 747 (2015) 98 [arXiv:1412.7706] [INSPIRE].
  35. [35]
    ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].
  36. [36]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  37. [37]
    CMS collaboration, Search for Resonances Decaying to Dijet Final States at \( \sqrt{s}=8 \) TeV with Scouting Data, CMS-PAS-EXO-14-005.
  38. [38]
    CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].
  39. [39]
    CMS collaboration, Search for pair-production of second-generation scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the CMS detector, CMS-PAS-EXO-16-007.
  40. [40]
    CMS collaboration, Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 739 (2014) 229 [arXiv:1408.0806] [INSPIRE].
  41. [41]
    CMS collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052012 [arXiv:1411.6977] [INSPIRE].
  42. [42]
    CMS collaboration, Search for Long-Lived Neutral Particles Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 012007 [arXiv:1411.6530] [INSPIRE].
  43. [43]
    ATLAS collaboration, Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 072004 [arXiv:1504.05162] [INSPIRE].
  44. [44]
    ATLAS collaboration, Search for pair-produced long-lived neutral particles decaying in the ATLAS hadronic calorimeter in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 743 (2015) 15 [arXiv:1501.04020] [INSPIRE].
  45. [45]
    ATLAS collaboration, Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 012010 [arXiv:1504.03634] [INSPIRE].
  46. [46]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  47. [47]
    ATLAS collaboration, Search for the electroweak production of supersymmetric particles in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052002 [arXiv:1509.07152] [INSPIRE].
  48. [48]
    CMS collaboration, Search for electroweak production of charginos in final states with two tau leptons in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-SUS-14-022.
  49. [49]
    CMS collaboration, Search for direct production of bottom and light top squark pairs in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-16-001.
  50. [50]
    CMS collaboration, Search for new physics with the M T 2 variable in all-jets final states produced in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 10 (2016) 006 [arXiv:1603.04053] [INSPIRE].
  51. [51]
    CMS collaboration, Search for direct production of top squark pairs decaying to all-hadronic final states in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-16-007.
  52. [52]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 392 [arXiv:1605.03814] [INSPIRE].
  53. [53]
    ATLAS collaboration, Search for Bottom Squark Pair Production with the ATLAS Detector in proton-proton Collisions at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2015-066.
  54. [54]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  55. [55]
    CMS collaboration, Searches for Long-lived Charged Particles in Proton-Proton Collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-010.
  56. [56]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  57. [57]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, Eur. Phys. J. C 76 (2016) 6 [arXiv:1507.04548] [INSPIRE].
  58. [58]
    ATLAS collaboration, Search for new phenomena with photon+jet events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2016) 041 [arXiv:1512.05910] [INSPIRE].
  59. [59]
    ATLAS collaboration, Search for new phenomena in photon+jet events collected in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 728 (2014) 562 [arXiv:1309.3230] [INSPIRE].
  60. [60]
    CMS collaboration, Search for excited quarks in the γ + jet final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 738 (2014) 274 [arXiv:1406.5171] [INSPIRE].
  61. [61]
    B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald and K. Schmidt-Hoberg, ALPtraum: ALP production in proton beam dump experiments, JHEP 02 (2016) 018 [arXiv:1512.03069] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482 [arXiv:1509.00476] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Nima Arkani-Hamed
    • 1
  • Raffaele Tito D’Agnolo
    • 1
  • Matthew Low
    • 1
  • David Pinner
    • 2
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Princeton Center for Theoretical PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations