Journal of High Energy Physics

, 2016:72 | Cite as

Hierarchy spectrum of SM fermions: from top quark to electron neutrino

Open Access
Regular Article - Theoretical Physics


In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν R f . Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν R f and their left-handed conjugated fields ν R fc . Light masses of gauged Majorana neutrinos in the normal hierarchy (10−5 − 10−2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of \( t\overline{t} \)-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).


Quark Masses and SM Parameters Spontaneous Symmetry Breaking Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 1, Phys. Rev. 122 (1961) 345 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T.W.B. Kibble, Symmetry breaking in non-abelian gauge theories, Phys. Rev. 155 (1967) 1554 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  9. [9]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  10. [10]
    CDF collaboration, F. Abe et al., Observation of top quark production in \( \overline{p}p \) collisions, Phys. Rev. Lett. 74 (1995) 2626 [hep-ex/9503002] [INSPIRE].
  11. [11]
    D0 collaboration, S. Abachi et al., Search for high mass top quark production in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 74 (1995) 2422 [hep-ex/9411001] [INSPIRE].
  12. [12]
    R. Gatto, G. Sartori and M. Tonin, Weak selfmasses, Cabibbo angle and broken SU(2) × SU(2), Phys. Lett. B 28 (1968) 128 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Cabibbo and L. Maiani, Dynamical interrelation of weak, electromagnetic and strong interactions and the value of theta, Phys. Lett. B 28 (1968) 131 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    K. Tanaka and P. Tarjanne, Cabibbo angle and selfconsistency condition, Phys. Rev. Lett. 23 (1969) 1137 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.J. Oakes, SU(2) × SU(2) breaking and the Cabibbo angle, Phys. Lett. B 29 (1969) 683 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Genz, J. Katz, L.R. Ram Mohan and S. Tatur, Chiral symmetry breaking and the cabibbo angle, Phys. Rev. D 6 (1972) 3259 [INSPIRE].ADSGoogle Scholar
  17. [17]
    H. Pagels, Vacuum stability and the Cabibbo angle, Phys. Rev. D 11 (1975) 1213 [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Ebrahim, Chiral SU(4) × SU(4) symmetry breaking and the Cabibbo angle, Phys. Lett. B 69 (1977) 229 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H. Fritzsch, Calculating the Cabibbo angle, Phys. Lett. B 70 (1977) 436 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Weinberg, The problem of mass, Trans. New York Acad. Sci. 38 (1977) 185.CrossRefGoogle Scholar
  21. [21]
    A. De Rujula, H. Georgi and S.L. Glashow, A theory of flavor mixing, Annals Phys. 109 (1977) 258 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Wilczek and A. Zee, Discrete flavor symmetries and a formula for the Cabibbo angle, Phys. Lett. B 70 (1977) 418 [Erratum ibid. B 72 (1978) 504] [INSPIRE].
  23. [23]
    R.N. Mohapatra and G. Senjanović, Cabibbo Angle, CP-violation and quark masses, Phys. Lett. B 73 (1978) 176 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Wilczek and A. Zee, Horizontal interaction and weak mixing angles, Phys. Rev. Lett. 42 (1979) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Wyler, The Cabibbo angle in the SU(2)L × U(1) gauge theories, Phys. Rev. D 19 (1979) 330 [INSPIRE].ADSGoogle Scholar
  26. [26]
    H. Fritzsch, Hierarchical chiral symmetries and the quark mass matrix, Phys. Lett. B 184 (1987) 391 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P.H. Frampton and Y. Okada, Simplified symmetric quark mass matrices and flavor mixing, Mod. Phys. Lett. A 6 (1991) 2169 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.L. Rosner and M.P. Worah, Models of the quark mixing matrix, Phys. Rev. D 46 (1992) 1131 [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Raby, Introduction to theories of fermion masses, hep-ph/9501349 [INSPIRE].
  30. [30]
    T. Ito and M. Tanimoto, The Unitarity triangle and quark mass matrices on the NNI basis, Phys. Rev. D 55 (1997) 1509 [hep-ph/9603393] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Z.-Z. Xing, Implications of the quark mass hierarchy on flavor mixings, J. Phys. G 23 (1997) 1563 [hep-ph/9609204] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.-S. Xue, Quark masses and mixing angles, Phys. Lett. B 398 (1997) 177 [hep-ph/9610508] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.-S. Xue, Neutrino masses and mixings, Mod. Phys. Lett. A 14 (1999) 2701 [hep-ph/9706301] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Barbieri, L.J. Hall, S. Raby and A. Romanino, Unified theories with U(2) flavor symmetry, Nucl. Phys. B 493 (1997) 3 [hep-ph/9610449] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Falcone and F. Tramontano, Relation between quark masses and weak mixings, Phys. Rev. D 59 (1999) 017302 [hep-ph/9806496] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Mondragon and E. Rodriguez-Jauregui, The breaking of the flavor permutational symmetry: mass textures and the CKM matrix, Phys. Rev. D 59 (1999) 093009 [hep-ph/9807214] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Mondragon and E. Rodriguez-Jauregui, The CP-violating phase δ 13 and the quark mixing angles θ 13 , θ 23 and θ 12 from flavor permutational symmetry breaking, Phys. Rev. D 61 (2000) 113002 [hep-ph/9906429] [INSPIRE].ADSGoogle Scholar
  38. [38]
    H. Fritzsch and Z.-Z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys. 45 (2000) 1 [hep-ph/9912358] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G.C. Branco, D. Emmanuel-Costa and C. Simoes, Nearest-neighbour interaction from an abelian symmetry and deviations from hermiticity, Phys. Lett. B 690 (2010) 62 [arXiv:1001.5065] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. González Canales et al., Quark sector of S3 models: classification and comparison with experimental data, Phys. Rev. D 88 (2013) 096004 [arXiv:1304.6644] [INSPIRE].ADSGoogle Scholar
  41. [41]
    L.J. Hall and A. Rasin, On the generality of certain predictions for quark mixing, Phys. Lett. B 315 (1993) 164 [hep-ph/9303303] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Rasin, Diagonalization of quark mass matrices and the Cabibbo-Kobayashi-Maskawa matrix, hep-ph/9708216 [INSPIRE].
  43. [43]
    A. Rasin, Hierarchical quark mass matrices, Phys. Rev. D 58 (1998) 096012 [hep-ph/9802356] [INSPIRE].ADSGoogle Scholar
  44. [44]
    H. Fritzsch and Z.-Z. Xing, The light quark sector, CP-violation and the unitarity triangle, Nucl. Phys. B 556 (1999) 49 [hep-ph/9904286] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Z.-Z. Xing, Model-independent access to the structure of quark flavor mixing, Phys. Rev. D 86 (2012) 113006 [arXiv:1211.3890] [INSPIRE].ADSGoogle Scholar
  46. [46]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  47. [47]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. Fritzsch, Quark masses and flavor mixing, Nucl. Phys. B 155 (1979) 189 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  50. [50]
    A.E. Faraggi, String phenomenology: past, present and future perspectives, Galaxies 2 (2014) 223 [arXiv:1404.5180] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Dine, Supersymmetry and string theory: beyond the standard model, Cambridge University Press, Cambridge U.K. (2015).MATHCrossRefGoogle Scholar
  52. [52]
    H. Fritzsch, Weak interaction mixing in the six-quark theory, Phys. Lett. B 73 (1978) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Ramond, R.G. Roberts and G.G. Ross, Stitching the Yukawa quilt, Nucl. Phys. B 406 (1993) 19 [hep-ph/9303320] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    G.C. Branco, D. Emmanuel-Costa and R. Gonzalez Felipe, Texture zeros and weak basis transformations, Phys. Lett. B 477 (2000) 147 [hep-ph/9911418] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    R.G. Roberts, A. Romanino, G.G. Ross and L. Velasco-Sevilla, Precision test of a fermion mass texture, Nucl. Phys. B 615 (2001) 358 [hep-ph/0104088] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    H. Fritzsch and Z.-Z. Xing, Four zero texture of Hermitian quark mass matrices and current experimental tests, Phys. Lett. B 555 (2003) 63 [hep-ph/0212195] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Gupta and G. Ahuja, Flavor mixings and textures of the fermion mass matrices, Int. J. Mod. Phys. A 27 (2012) 1230033 [arXiv:1302.4823] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  58. [58]
    S. Pakvasa and H. Sugawara, CP violation in six quark model, Phys. Rev. D 14 (1976) 305 [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. Pakvasa and H. Sugawara, Discrete symmetry and Cabibbo angle, Phys. Lett. B 73 (1978) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    E. Derman, Flavor unification, τ decay and b decay within the six quark six lepton Weinberg-Salam model, Phys. Rev. D 19 (1979) 317 [INSPIRE].ADSGoogle Scholar
  61. [61]
    Y. Yamanaka, H. Sugawara and S. Pakvasa, Permutation symmetries and the fermion mass matrix, Phys. Rev. D 25 (1982) 1895 [Erratum ibid. D 29 (1984) 2135] [INSPIRE].
  62. [62]
    R. Yahalom, Horizontal permutation symmetry, fermion masses and pseudogoldstone bosons in SU(2)L × U(1), Phys. Rev. D 29 (1984) 536 [INSPIRE].ADSGoogle Scholar
  63. [63]
    G. Altarelli, Status of neutrino mass and mixing, Int. J. Mod. Phys. A 29 (2014) 1444002 [arXiv:1404.3859] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino mass and mixing: from theory to experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    H. Fritzsch and Z.-Z. Xing, Lepton mass hierarchy and neutrino mixing, Phys. Lett. B 634 (2006) 514 [hep-ph/0601104] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    H. Fritzsch and Z.-Z. Xing, Relating the neutrino mixing angles to a lepton mass hierarchy, Phys. Lett. B 682 (2009) 220 [arXiv:0911.1857] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    W.G. Hollik and U.J. Saldaña Salazar, The double mass hierarchy pattern: simultaneously understanding quark and lepton mixing, Nucl. Phys. B 892 (2015) 364 [arXiv:1411.3549] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 287 [INSPIRE].
  69. [69]
    G. Altarelli and G. Blankenburg, Different SO(10) paths to fermion masses and mixings, JHEP 03 (2011) 133 [arXiv:1012.2697] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  70. [70]
    A.S. Joshipura and K.M. Patel, Fermion masses in SO(10) models, Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE].ADSGoogle Scholar
  71. [71]
    W. Grimus and H. Kühböck, Fermion masses and mixings in a renormalizable SO(10) × Z 2 GUT, Phys. Lett. B 643 (2006) 182 [hep-ph/0607197] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    L. Lavoura, H. Kuhbock and W. Grimus, Charged-fermion masses in SO(10): analysis with scalars in 10 + 120, Nucl. Phys. B 754 (2006) 1 [hep-ph/0603259] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    C.H. Albright and S. Nandi, New approach for the construction of fermion mass matrices in SO(10) SUSY GUTs, Phys. Rev. Lett. 73 (1994) 930 [hep-ph/9311227] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    C.H. Albright and S.M. Barr, Fermion masses in SO(10) with a single adjoint Higgs field, Phys. Rev. D 58 (1998) 013002 [hep-ph/9712488] [INSPIRE].ADSGoogle Scholar
  75. [75]
    C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    C.T. Hill, ‘Super’-dilatation symmetry of the top-Higgs system, Phys. Rev. D 87 (2013) 065002 [arXiv:1211.2773] [INSPIRE].ADSGoogle Scholar
  78. [78]
    C.T. Hill, Quark and lepton masses from renormalization group fixed points, Phys. Rev. D 24 (1981) 691 [INSPIRE].ADSGoogle Scholar
  79. [79]
    C.T. Hill, C.N. Leung and S. Rao, Renormalization group fixed points and the Higgs boson spectrum, Nucl. Phys. B 262 (1985) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J. Bagger, S. Dimopoulous and E. Masso, Renormalization-group constraints in supersymmetric theories, Phys. Rev. Lett. 55 (1985) 920.ADSCrossRefGoogle Scholar
  81. [81]
    W.A. Bardeen, C.T. Hill and M. Lindner, Minimal dynamical symmetry breaking of the standard model, Phys. Rev. D 41 (1990) 1647 [INSPIRE].ADSGoogle Scholar
  82. [82]
    Y. Nambu, in Proceedings of the 1989 workshop on Dynamical Symmetry Breaking, T. Muta and K. Yamawaki eds., Nagoya University, Nagoya, Japan (1990).Google Scholar
  83. [83]
    V.A. Miransky, M. Tanabashi and K. Yamawaki, Is the t quark responsible for the mass of W and Z bosons?, Mod. Phys. Lett. A 4 (1989) 1043 [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    H. Kleinert, Particles and quantum field, World Scientific, Singapore (2016),
  85. [85]
    W.J. Marciano, Heavy top-quark mass predictions, Phys. Rev. Lett. 62 (1989) 2793.ADSCrossRefGoogle Scholar
  86. [86]
    G. Cvetič, Top quark condensation, Rev. Mod. Phys. 71 (1999) 513 [hep-ph/9702381] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].
  88. [88]
    S.-S. Xue, Higgs boson and top-quark masses and parity-symmetry restoration, Phys. Lett. B 727 (2013) 308 [arXiv:1308.6486] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    S.-S. Xue, Ultraviolet fixed point and massive composite particles in TeV scales, Phys. Lett. B 737 (2014) 172 [arXiv:1405.1867] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    S.-S. Xue, A lattice chiral theory with multi-fermion couplings, Phys. Lett. B 381 (1996) 277 [hep-lat/9605003] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    S.-S. Xue, A possible scaling region of chiral fermions on a lattice, Nucl. Phys. B 486 (1997) 282 [hep-lat/9605005] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S.-S. Xue, Chiral gauged fermions on a lattice, Nucl. Phys. B 580 (2000) 365 [hep-lat/0002026] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    S.-S. Xue, A Further study of the possible scaling region of lattice chiral fermions, Phys. Rev. D 61 (2000) 054502 [hep-lat/9910013] [INSPIRE].ADSGoogle Scholar
  94. [94]
    S.-S. Xue, On the standard model and parity conservation, J. Phys. G 29 (2003) 2381.ADSCrossRefGoogle Scholar
  95. [95]
    S.-S. Xue, Do high-energy neutrinos travel faster than photons in a discrete space-time?, Phys. Lett. B 706 (2011) 213 [arXiv:1110.1317] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    S.-S. Xue, Vectorlike W ± -boson coupling at TeV and third family fermion masses, Phys. Rev. D 93 (2016) 073001 [arXiv:1506.05994] [INSPIRE].ADSGoogle Scholar
  98. [98]
    S.-S. Xue, Detailed discussions and calculations of quantum Regge calculus of Einstein-Cartan theory, Phys. Rev. D 82 (2010) 064039 [arXiv:0912.2435] [INSPIRE].ADSGoogle Scholar
  99. [99]
    S.-S. Xue, Quantum Regge calculus of Einstein-Cartan theory, Phys. Lett. B 682 (2009) 300 [arXiv:0902.3407] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  100. [100]
    S.-S. Xue, The phase and critical point of quantum Einstein-Cartan gravity, Phys. Lett. B 711 (2012) 404 [arXiv:1112.1323] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    H.B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice. 1. Proof by homotopy theory, Nucl. Phys. B 185 (1981) 20 [Erratum ibid. B 195 (1982) 541] [INSPIRE].
  102. [102]
    H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 2. Intuitive Topological Proof, Nucl. Phys. B 193 (1981) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  103. [103]
    H.B. Nielsen and M. Ninomiya, No go theorem for regularizing chiral fermions, Phys. Lett. 105B (1981) 219 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    H.B. Nielsen and M. Ninomiya, Intuitive understanding of anomalies: A Paradox with regularization, Int. J. Mod. Phys. A 6 (1991) 2913 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    C. Itzykson and J.B. Zuber, Quantum field theory, McGraw-Hill Inc., U.S.A. (2006).Google Scholar
  106. [106]
    H. Kleinert, On the hadronization of quark theories, in Understanding the fundamental constituents of matter, A. Zichichi ed., Plenum Press, New York U.S.A. (1978).Google Scholar
  107. [107]
    S.-S. Xue, Resonant and nonresonant new phenomena of four-fermion operators for experimental searches, Phys. Lett. B 744 (2015) 88 [arXiv:1501.06844] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
  109. [109]
    S.-S. Xue, Why is the top quark much heavier than other fermions?, Phys. Lett. B 721 (2013) 347 [arXiv:1301.4254] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  110. [110]
    E. Eichten and J. Preskill, Chiral gauge theories on the lattice, Nucl. Phys. B 268 (1986) 179 [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    M. Creutz, M. Tytgat, C. Rebbi and S.-S. Xue, Lattice formulation of the standard model, Phys. Lett. B 402 (1997) 341 [hep-lat/9612017] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    T.P. Cheng and L.F. Li, Gauge theory of elementary particle physics, Oxford University Press, Oxford U.K. (1984).Google Scholar
  113. [113]
    R.N. Mohapatra, P.B. Pal, Massive neutrinos in physics and astro-physics, 3rd edition, World Scientific, Singapore (2004).Google Scholar
  114. [114]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  115. [115]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in pp collisions at sqrts = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [INSPIRE].
  117. [117]
    D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [INSPIRE].
  118. [118]
    R. Fukuda and T. Kugo, Schwinger-Dyson Equation for Massless Vector Theory and Absence of Fermion Pole, Nucl. Phys. B 117 (1976) 250 [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    C.N. Leung, S.T. Love and W.A. Bardeen, Spontaneous Symmetry Breaking in Scale Invariant Quantum Electrodynamics, Nucl. Phys. B 273 (1986) 649 [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    C.N. Leung, S.T. Love and W.A. Bardeen, Aspects of dynamical symmetry breaking in gauge field theories, Nucl. Phys. B 323 (1989) 493 [INSPIRE].ADSGoogle Scholar
  121. [121]
    A. Kocić, S. Hands, J.B. Kogut and E. Dagotto, The equation of state and critical exponents in quenched strongly coupled QED, Nucl. Phys. B 347 (1990) 217 [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    G. Preparata and S.-S. Xue, Do we live on a lattice? Fermion masses from Planck mass, Phys. Lett. B 264 (1991) 35 [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    G. Preparata and S.-S. Xue, A possible massive solution to Dyson equation with small gauge coupling, Phys. Lett. B 302 (1993) 442 [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    G. Preparata and S.-S. Xue, Mass relation between top and bottom quarks, Phys. Lett. B 325 (1994) 161 [hep-lat/9401017] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    S.-S. Xue, Fine-tuning the low-energy physics, Mod. Phys. Lett. A 15 (2000) 1089.ADSCrossRefGoogle Scholar
  126. [126]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  127. [127]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations in the MiniBooNE experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588] [INSPIRE].
  128. [128]
    C. Giunti and C. W. Kim, Fundamentals of neutrino physics and astrophysics, Oxford University Press, Oxford U.K. (2007).CrossRefGoogle Scholar
  129. [129]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  130. [130]
    S.-S. Xue, Diboson channels in ATLAS and CMS experiments, arXiv:1601.06845 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.ICRANetPescaraItaly
  2. 2.Physics DepartmentSapienza University of RomeRomaItaly

Personalised recommendations